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Effect of Surface Roughness on Eddy Current Losses at Microwave Frequencies 

SAMUEL P. MORGAN, JR. 
Bell Telephone Laboratories, Murray Hill, New Jersey 

(Received October 4, 1948) 

A theoretical investigation has been made of the power 
dissipation by eddy currents in a metallic surface at micro
wave frequencies in the presence of regular parallel grooves or 
scratches whose dimensions are comparable to the eddy current 
skin depth'. The eddy current equation has been integrated 
numerically for grooves of various shapes and sizes transverse 
to the direction of induced current flow, and the corresponding 
losses are calculated ,and plotted. The power dissipation is 
increased by about 60 percent over its value for a smooth 

I. INTRODUCTION 

I T is well known that electromagnetic oscillations 
in a wave guide or cavity resonator are always 

accompanied by heat losses caused by the flow of 
induced currents in the metal walls of the structure. 
The usual formulas for these losses are derived on 
the assumption of perfectly smooth metal surfaces 
of conductivity equal to that of the bulk metal. 
In experimental studies at the Bell Telephone 
Laboratories, however, it is being found that for 
wave-lengths in the neighborhood of 3 em the losses 
are materially higher than calculated, by amounts 
ranging roughly from 10 percent to 60 percent. 
Other workl at 1.25 em has revealed losses similarly 
in excesS of the theoretical values, and the dis
crepancies tend to become worse at shorter wave
lengths. These discrepancies cannot be explained 
as attributable to the deviations from Ohm's law 
which occur2• 3 when the eddy current skin depth 
becomes less than the mean free path of electrons 
in the metal, or when the period of the electro
magnetic oscillations becomes comparable with the 
mean time between collisions of an electron with 
the crystalline lattice, since it now appears that the 
latter effects will be encountered in good conductors 
at room temperature only if the wave-length is 
shorter than a few tenths of a millimeter. We have 
therefore to seek a classical explanation.of the ob
served increase in losses at centimeter wave-lengths, 
and the question arises what part the roughness of 
the metal surface may play. 

It has been definitely established4 that the effec
tive resistance of copper wires at 3300 Mc depends 
markedly upon the surface treatment to which 
they are subjected, but the published experimental 
results which deal directly with the effect of surface 
roughness on losses are still fragmentary and lU-

1 E. Maxwell, J. App. Phys. 18, 629 (1947). 
2 A. B. Pippard, Proe. Roy. Soc. A191, 385 (1947). 
3 G. E. H. Reuter and E. H. Sondheimer, Nature 161, 394 

(1948). 
• C. J. Milner and R. B. Clayton, J. Inst. Elec. Eng. 93, 

IlIa, 1409 (1946). 
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surface when the root-mean-square deviation.of the grooved 
surface from an average plane is equal to the skin depth; the 
exact shape of the grooves is not critical. The increase in eddy 
current losses caused by grooves parallel to the current is 
shown in a particular case to be only about one-third as great 
as the increase caused by transverse grooves of similar size. 
The effect on losses of an isolated narrow erack or fissure trans
verse to the current is briefly discussed. 

complete. No experimental data are yet available 
which show quantitatively the dependence of eddy 
current losses on the degree of roughness of the 
conducting surface. In the present paper we at
tempt to give a theoretical discussion of this 
problem. 

At microwave frequencies the induced currents 
flowing in a conductor are confined to an exceed
ingly thin surface layer or skin, whose thickness is 
measured essentially by the characteristic length 

(1) 

where J.I. and g are the permeability and the con
ductivity of the metal in m.k.s. units and w is the 
angular frequency. For copper a convenient numeri
cal relation is 

0= 6.6,,-l em, 

where" is the frequency in cycles per second. Thus 
at 10 kc, 0 = 0.066 em; at 1 Me, 0.0066 em; and at 
104 Me, 6.6X10-5 cm or 0.66 micron. Otherwise 
expressed, for 3-cm waves the skin thickness in 
copper is only 26 microinches, which is of the same 
order as the roughness of natural finishes such as 
machined or drawn surfaces. In order to determine 
to what extent eddy current losses may be increased 
by surface irregularities whose dimensions are com
parable, on the average, to the skin depth, we shall 
calculate the theoretical magnitude of the effect 
in a few idealized cases. 

The cases treated below are all two-dimensional; 
i.e., the surface roughness is assumed to consist of 
infinitely" long parallel groov~s or scratches either 
normal to or parallel to the direction of induced 
current flow. The ratio of power· dissipated in a 
grooved surface to that dissipated in a plane sur
face under the same external field can be computed 
by straightforward if laborious numerical methods 
for grooves of any shape (at least for grooves trans
verse to the current). The relative power dissipa
tion may be plotted against some standard quantity 
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representing the surface roughness,6,6 for example, 
the root-mean-square deviation from the mean 
surface, measured in units of the skin thickness. 
Since the curves of loss vs. roughness are quite 
similar for grooves of a few simple shapes (e.g., 
square, rect;angular, and equilateral triangular), one 
may be reasonably confident that the results do not 
depend critically on the exact shape of the surface. 
This conclusion naturally breaks down for surfaces 
which have profiles widely different from those 
studied, or which exhibit flaws such as deep cracks 
or fissures. In Section IV of this paper a brief 
approximate treatment is given of the increase 
in eddy current dissipation resulting from an iso
lated narrow crack transverse to the current flow. 

n. GROOVES TRANSVERSE TO CURRENT FLOW 

Consider a semi-infinite conducting solid, as in 
Fig. la or 1 b, extending from y = f(x) to Y = - 00 , 

where f(x) is a periodic function of period d. This 
conductor may be part of the surface of a wave 
guide, coaxial pair, cavity resonator, or microwave 
antenna; the over-all curvature of the metal surface, 
if any, will be assumed negligible compared to the 
reciprocal of the groove width d. Let an alternating 
magnetic field Hoe iw1 be impressed in the z direction 
at the surface y=f(x) so that eddy currents are 
induced to flow parallel to the xy plane. If the con
ductor represents the metal surface of a wave guide, 
cavity resonator, or antenna, Ho may be computed 
for the given mode of oscillation on the assumption 
that the conductivity is infinite, the alteration of 
the field outside the metal caused by finite conduc
tivity being negligible to first approximation. Since 
the grooves are very shallow compared to the di
mensions of the apparatus, the impressed field does 
not vary appreciably with x from point to point 
on the surface. Furthermore the free-space wave
length is so much greater than the depth of pene
tration of the induced eddy currents that we are 
justified in neglecting the variation of Ho with z. 
Therefore, we shall treat the problem as two
dimensional and Ho as constant. 

In a material of conductivity g, dielectric con
stant E, and permeability}.', the harmonically vary
ing magnetic field satisfies the eddy current equa
tion 

(2) 

provided that the ratio wEI g of displacement cur
rent to conduction current is negligible compared to 
unity. This approximation is certainly valid for 
copper at microwave frequencies. 

If we introduce the characteristic skin thickness 

• American Standard for Surface Roughness, Waviness, and 
Lay (B46.1 American Standards Association, New York, 
New York, 1947). 

8 R. F. Gagg, E. R. Boynton, and James W. Owens, In
dustrial Standardization 19, 6 (1948). 
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o defined by (1) and recall that H is independent of 
z and has only a z component, (2) becomes 

iJ2H./ iJx2+ iJ2H./ iJy2 = (2i/02)H., (3) 

subject to the boundary conditions H.=Ho on the 
surface y=f(x) and H.~O as IYI~oo. 

In the special case where f(x) =0, the surface 
of the conductor is plane; H. is independent of x 
and is simply given by 

H.=Ho exp[ - (l+i) Iyl /oJ, (4) 

this being the well-known law of penetration of all 
harmonically varying field quantities beneath the 
plane surface of a conductor. If the surface is not 
plane, we may still expect H. to vanish exponen
tially at great depths, but in general it will depend 
upon both x and y. 

Once we have the solution of (3), subject to the 
assigned boundary conditions, the power dissi
pated by eddy currents in a given volume Vof the 
conducting material is evidently 

p= (1/2g) J>. J*dv= (1/2g) j>~ XH)· (v XH*)dv, 

(5) 

where J represents the eddy current density. If we 
consider a cell of width d equal to the periodic dis
tance in the x direction, unit length in the z direc
tion, and infinite depth, the integral on the right 
side of (5) may be transformed, as in Appendix I, 
into 

d !(x) 

p= - (ljg02)ImHo* f f Hxdydx, (6) 
o -00 

where the integration is extended over the shaded 
region of Fig. la or lb. 

If the surface were plane, from (4) the power 
dissipated in a strip of unit length and of width d 
would be just 

IH ol2 00 d. I H ol2d 
Po= ---Imf f e-(H')!lI~dxdy=---· 

g02 0 0 2go 

The ratio of power dissipated per unit length and 

I-- d -----l I-- d ---I 

<-) (b) 

FIG. 1. Cross sections of semi-infinite conductors with 
rectangular and triangular surface grooves. 
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width of grooved and smooth surfaces, respectively, 
is therefore 

P 2 fBff(Z) 
-= - ImHo* H"dydx. (7) 
Po IHol2dD 0-00 

In order to calculate the relative power dissipa
tion numerically from (7), we have first to solve the 
partial differential equation (3) with its attendant 
boundary conditions. An approximate solution 
giving the values of Hz over a network of points 
covering the desired region may be obtained with 
sufficient accuracy for our purpose by the so-called 
"relaxation method,"7 details of which are briefly 
described in Appendix I I. Here we shall present 
merely the results. 

Before carrying out numerical analysis we must 
specify the size and shape of the surface grooves, 

-200 200 200 

I 
q 
'I 156-73; 168-58i 200 

125-97i 146-77i 200 

101-98i 128-78i 200 

74-9Oi 104-73i 200 

34- 77i 49-72i 86-56i 

3-55i 10-56i 24-54i 

-13-34i -10-35i -4-36i 

-16-17L -ls-18i -13-19i 

-13-7i -13-7i -12-8i 

- 8-2i -8-2i -8-2i 

_.1 ... Ii _4 +It -4 ... ti 

-2.2i -2 .. 2i -2.2i 

-1.2t -1+2i -I +2i 

-I + Ii 1+1i -1+ Ii 

200 ~Q.O-

99-53i 1.9Z =53 i 

33-54i ~6:~4i 

0-37i ~:~7i 

-11-20i ~IQ:20i 

-11-8i _1I_8i 

-8- 2i ~~-}i 

-4 .. It -:,!~..!i 

-2.2i ~'l~2i 

-I +2i ::I;t-li 

_1+li =!.+.Ji 

~O __ ~O~ __ ~ __ ~O __ ~~ __ 

FIG. 2. Solution of the eddy current equation, [PH.lax' 
+a'H.lay"= (2ilo2 )H., for a square groove of dimensions 
2oX2o. 

7 R. V. Southwell, Relaxation Methods in Theoretical Physics 
(Oxford University Press, London, England, 1946). 
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I.e., the form of the function f(x). The simplest 
geometrical choices are: 

(1) Rectangular: 

o for Ixi <!a, 
flex) = 

-b for !a< Ixl <!d. 
(2) Equilateral triangular: 

-v3"x for O::S;x::S;!d, 
!2(X) = 

+v3"x for 02:x2: -!d. 

Both hex) and !2(X) are supposed to be periodic in 
x with the period d. 

For the rectangular grooves the mean value of 
Yl = hex) and the r.m.s. deviation of Yl from the 
mean are, respectively, 

fh= -(d-a)bjd, 
~l = (bjd)[a(d-a) Jt. 

Similarly, for the triangular grooves 

'02= -iv3"d, 
~2=id. 

For the actual numerical integration Ho was 
assigned the arbitrary value 200 (this value ob
viously cancels out of Eq. (7) for the power ratio), 
and the values of H. were determined to the nearest 
integer at the lattice points of a regular network 
covering the strip O::S;x::S;!d, account being taken 
of the fact that both types of grooves are sym
metric with respect to the planes x=o and x=!d. 

,The final values of H. are recorded on Fig. 2 for 
a square groove with a=b=2D, d=4D, ~l=O, on a 
square mesh of interval !D. Having this solution, 
the double integral in (7) may be evaluated by 
repeated application of quadrature formulas 8 an
alogous to Simpson's rule. For the square groove 
of Fig. 2 we obtain 

B fez) 

1m f f H"dydx= -2514Xi02
• 

o -00 

Substitution into (7) gives, smce Ho = 200 and 
d=4o, 

PjPo= 2514j1600 = 1.57. 

I t may be noted that the solution of this problem on 
a coarser net with mesh,interval 0 gave PjPo= 1.54, 
which would probably incline us to trust the above 
value to within one percent. This is certainly 
adequate, in view of the fact that we have been 
treating a highly idealized problem with no im
mediate prospects for an exact comparison of the 
theoretical results with experiment. 

S Tables of Lagrangian Interpolation Coefficients (Columbia 
University Press, New York, New York, 1944), pp. xxxii
xxxiii. 
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Calculations exactly similar to those just out
lined were carried through for three other sizes of 
square grooves, for which the ratio a:b:d=1:1:2, 
as well as for three sizes of rectangular grooves for 
which a:b:d=3:2:4. Finally the solution of the 
eddy current equation (3) was obtained for three 
sizes of equilateral triangular grooves, the latter 
calculations being carried out on a triangular-mesh 
net9 with a mesh interval equal to 20/3. All of our 
numerical results for grooves transverse to current 
flow are summarized in Table 1, which gives the 
relative power dissipation P / Po for different values 
of the ratio t../o of r.m.s. roughness to skin thick
ness. These results are plotted in Figs. 3 and 4, 
where the surface profiles are also drawn to such a 
scale that the value of t.. is the same for each. 

Qualitatively the curves of Figs. 3 and 4 require 
little interpretation.* It is interesting to consider a 
few actual numerical magnitudes for 3-cm waves 
in a copper pipe, where 0 = 26 microinches. For 
square grooves with a peak-to-trough distance of 20 
microinches we have P / Po = 1.09; for 30 micro
inches, 1.23; for 45 microinches, 1.49; and for 90 
microinches, 1.74. It was to be anticipated that the 
relative power dissipation would approach the 
asymptotic value 2.00 for all three profiles for large 
values of the ratio t../o, since, when the skin depth 
is small compared with the dimensions of the 
grooves, the induced currents follow the surface 
closely and in each case the total path length 
through which they flow is doubled over its value 
for a plane surface. We may expect in general for 
shallow transverse scratches, whose depth is small 
compared to the free-space wave-length, that in the 
limit when the skin depth is small compared to the 
average dimensions of the scratches the whole 
surface will be energized uniformly and the losses 
will merely be proportional to the total exposed 
area. By what factor the area of an actual metal sur
face exceeds the area of an ideal smooth surface 
of the same length and breadth is a matter for 
experimental' rather than theoretical investigation. 

III. GROOVES PARALLEL TO CURRENT FLOW 

If the impressed magnetic field is parallel to the 
xy plane of Fig. 1, so that the induced currents all 
flow in the z direction parallel to the grooves, we 
have, in general, a much more difficult boundary 
value problem t1ian that which occurred in Section 

• Reference 7, pp. 11, 20-24, et passim. The use of the 
greater mesh interval is probably justified by the fact, here 
pointed out, that an inherently more accurate finite difference 
approximation can be employed with a triangular mesh than 
with a square mesh. 

* It is probably unnecessary to remark that slight apparent 
implausibilities in the relative shapes of the plotted curves, 
such as the more pronounced elbow near l:>.j 6 = 1.00 of the 
lower curve in Fig. 4, are doubtless insignificant; they could 
easily be due to the uncertainty in the third figure of our 
values for PIPo• 
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TABLE I. Relative power dissipation vs. root-mean-square 
roughness for surface grooves transverse to current flow. 

PIPo 
Ill/; Square Rectangular Triangular 

grooves grooves grooves 

0 1.00 1.00 1.00 
0.25 1.04 
0.43 1.25 
0.50 1.17 1.24 
0.87 1.60 
1.00 1.57 1.61 
1.52 1.72 
1.67 1.80 
1.75 1.75 

11. In order to determine the electromagnetic field 
or the current density within the conductor, we 
need to know the tangential component H t of the 
external magnetic field at the surface. For example, 
in terms of the current density J. it is easy to show 
that the continuity requirement on H t at the sur
face leads (at least if the trace of the surface in the 
xy plane consists of straight-line segments) to the 
boundary condition 

aJz/an= (2i/02)Ht , 

where n, t, k are a right-handed system of unit 
vectors specifying, respectively, the outward nor
mal to the conductor, the tangent to the conductor 
in the xy plane, and the direction of the z axis. 

Unfortunately, we do not generally know the 
tangential component of the surface field, and we 
cannot even make the convenient assumption which \ 
was possible in Section II, namely, that He is 
approximately independent of frequency. Clearly, 
when the frequency is zero or the conductivity is 
zero, the lines of H run straight across the grooves 
and ridges in Fig. 1, completely unaffected by the 
presence of the metal. Of course, no eddy currents 
are induced by a rigorously static field (or in a 
perfect dielectric). When the frequency is infinite 
or the conductivity is infinite the field does not 
penetrate at all into the metal. The boundary is a 
line of H, and the surface field varies markedly 
from point to point, being strong near sharp corners 
and weak at the bottoms of grooves. In the general 
case of finite conductivity and finite frequency, the 

. lines of H are gradually forced out of the conductor 
as the frequency rises, the extent to which this 
occurs depending on the ratio of the dimensions of 
the grooves to the skin depth 0. 

An exact solution of the problem of eddy current 
losses in grooves parallel to the current flow would 
require the simultaneous determination of the elec
tromagnetic fields both outside and inside the con
ductor. While such an exact solution has not been 
carried out, it is possible to compute the external 
field on the assumption that the metal surface is a 
perfect conductor, and from this to obtain a good 
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approximation to the eddy current losses when the 
conductivity is finite but the transverse dimensions 
of the grooves are large compared to the charac
teristic skin depth. These losses may be compared 
with the losses caused by grooves of similar size 
and shape transverse to the current, for which the 
power dissipation, by the remarks at the end of 
Section II, is merely proportional to the total 
surface area. In this way we may get some indica
tion of the relative effect of the two kinds of grooves 
on surface losses. 

I- d ---i 

1.SUc.=1 
I 

'.0 0 

0 

-:::::= ~ ~ ..---;::::. 
0 v, 
0 

)/ 

0 / / 

LO 

'.4 

~ V 
0 '.0 

0 0" 050 07> '00 , 5 , so 1.15 2.00 

c./& 

FIG. 3. Relative power dissipation P/Po vs. root-mean
square roughness .6./5 for square and rectangular grooves 
transverse to current flow. 

We wish, accordingly, to calculate the field dis
tribution when an originally uniform alternating 
magnetic field is bounded on one side by a per
fectly conducting surface having regular parallel 
grooves or ridges transverse to the direction of the 
field, the dimensions of the grooves being much 
smaller than the free-space wave-length corre
sponding to the given frequency. Advantage may 
be taken of the fact that, when the wave-length is 
sufficiently long compared with the dimensions of 
the region under observation, the instantaneous 
field configurations are indistinguishable from those 
given by the static solution of Laplace's equation 
whfch satisfies the same boundary conditions. 
To see this, we observe that the free-space propaga
tion equation may be written in the form 

(8) 

where A is the free-space wave-length. Suppose that 
H varies an appreciable fraction of its total value 
within a distance d; more precisely, assume that 
some of the second derivatives on the left side of 
(8) are comparable in magnitude with H/d2• Now 
from (8), 

d2V'2H = 4'11"2 (d /A) 2H, 

so that, if d/A«l, we commit a negligible error by 
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replacing (8) with 
(9) 

A harmonically varying field which approximately 
satisfies (9) will be called "quasi-static." 

A two-dimensional quasi-static magnetic field 
He i", , may be derived from a stream function10 

w(x, y)eiwt by 

H",=ow/oy, H II = -ow/ox, H.=O, (10) 

where W satisfies the two-dimensional Laplace 
equation 

(11) 

On a perfectly conducting boundary the normal 
component of H vanishes and the stream function 
W is constant. Since (11) is satisfied by either the 
real or the imaginary part of any analytic function 
Wof the complex variable s=x+iy, our problem 
reduces to finding a suitable complex stream func
tion, 

W=<I>+iw, (12) 

whose imaginary part is constant on conducting 
boundaries. For a grooved or ridged boundary 
whose trace on the s-plane consists entirely of 
straight-line segments, W may be found by a 
Schwarz transformation. lo The transformation giv
ing the rectangular grooves of Fig. 1a is derived in 
terms of elliptic functions in Appendix III. 

.D 0 

, .. 0 .-
~ f..--' ...--

~ a ,. 
/~ a 

p 

Po 

W 0 

~ 
. 

0 ~ 

, .. 
00 

0 025 0'0 7> 100 125150 17S 1.00 

c./& 

FIG. 4. Relative power dissipation P/Po vs. root-mean
square roughness .6./5 for square and equilateral triangular 
grooves transverse to current flow. 

The power dissipated by eddy currents in a 
surface S of conductivity g, whose radius of ·curva
ture is large compared to the skin depth 0, is given 
approximately byll 

p= (1/2g0)j IHtl2ds, (13) 
s 

JO S. A. Schelkunoff, Electromagnetic Waves (D. van Nos
trand Company, Inc., New York, New York, 1943), pp. 174, 
179-180, 184 fI. 

11 Reference 10, p. 320. 
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where H t is the amplitude of the tangential mag
netic field impressed at the conducting surface. 
For the grooved surface under consideration, if the 
skin depth is very small compared to the transverS(! 
dimensions of a typical groove, we may obtain a 
good approximation to the dissipated power by 
using in (13) the value of H t which has been cal
culated on the assumption of a perfectly conducting 
surface. Of course (13) does not apply at a corner 
where the radius of curvature is zero; but if the 
size of the grooves is large com pared to the skin 
depth only a small fraction of the total power will 
be dissipated in the immediate vicinity of sharp 
corners. 

To the approximation considered, the integral in 
(13) is evaluated for the case of rectangular grooves 
in Appendix III. The ratio of eddy current power 
spent in a groove of width d to the power spent in 
a plane strip of width d and equal length is found 
to be 

!....= 2K'[k'2Sn (h, k')cn(h, k')]+ 1-2b, (14) 

Po 11" dn(h, k') d 

where the quantities hand k' are related to the 
dimensions a, b, d of Fig. la by the following pair 
of equations: 

2Z(h, k') 

h = (a/d)K' + (2b/d)K, 

2k'2sn(h, k')cn(h, k') 1I"(2b/d) 
+ =0. 

dn(h, k') K' 

(15) 

(16) 

In these equations K and K' are the complete 
elliptic integrals of the first kind to the comple
mentary moduli k and k', respectively, and Z(h, k') 
is the zeta-function of J acobL12 Thus we see that, 
whereas the limiting value of P/Po for grooves 
transverse to the current and large compared to the 
skin depth is just equal to the relative increase in 
total surface area, the limiting value for rectangular 
grooves parallel to the current is a function of the 
root of a pair of complicated transcendental equa
tions involving the dimensions of the grooves. 

Numerical results have been obtained only for 
grooves of square cross section, i.e., grooves with 

a=b=!d. 

In this case Eqs. (15) and (16) become 

h=K+K'/2, 

Z(h, k') 
k'2sn(h, k')cn(h, k') 11" 

------+-=0. 
dn(h, k') 2K' 

12 E. T. Whittaker and G. N. Watson, Modern Analysis 
(Cambridge University Press, London, England, 1940), 
fourth edition, p. 518. 
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These equations were solved for k by a trial and 
error process using a table of elliptic functions ;13 
the quantities of interest were found to be 

k=sin 3°16'=0.05698, k'=sin 86°44'=0.99838, 
K=1.5721, K'=4.2545, h=3.6993. 

Substitution of these numerical values into (14) 
gives for the limiting ratio of eddy current losses 
resulting from square grooves parallel to the 
current: 

(P / Po)u = 1.360. (17) 

Since the corresponding ratio for square grooves 
transverse to the current is 

(P / Po)J. = 2.000, (18) 

the increase in· power dissipation due to large 
"parallel" grooves is only about one-third as 
much as the increase due to large" perpendicular" 
grooves in this case. Whether the curves repre
senting (P /P o) II VS. A/b would be completely similar 
in shape to the curves of Figs. 3 and 4 for (P/Po)J. 
of course we cannot be sure, but from the compara
tive asymptotic values (17) and (18) it seems 
reasonable to believe that, insofar as anomalous 
eddy current losses may be attributable to surface 
grooves .and scratches, transverse grooves have a 
considerably greater adverse effect than grooves 
parallel to the current. 

IV. ISOLATED DEEP CRACK TRANSVERSE 
TO CURRENT 

In addition to shallow scratches it is quite likely 
that a metal surface which has been strained in the 
process of working will exhibit occasional narrow 
cracks and fissures whose depth may be sev~ral 
times the skin thickness, though still small com
pared with the free-space wave-length corre
sponding to the given frequency. An approximation 
to the eddy current power dissipated in such a 
crack transverse to the current may be obtained by 
regarding it as a section of parallel-plane trans
mission line. 

Consider an infinitely long rectangular groove of 
width b and length l (Fig. 5) in a semi-infinite 
conducting medium of electrical constants E, /J-, g. 
Neglecting edge effects near the opening, unit 
length of this groove is equivalent to a transmission 
linel4 for transverse magnetic waves (H perpendicu
lar to plane of paper) whose distributed series im
pedance and shunt admittance per unit distance 

13 E. P. Adams and R. L. Hippisley, Smithsonian Mathe
matical Formulae and Tables of Elliptic Functions (Smith
sonian Institution, Washington, D. c., 1922), pp. 260-309. 
Since we have used linear interpolation uncritically with these 
tables, the numerical values in this section are probably given 
to one more figure than is significant. 

a Reference 10, pp. 484 ff. 
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FIG. S. Cross section of isolated rectangular 
groove in a conducting surface. 

are, respectively, 

Z = 2'1+iwL = 2(1 +i)/go+iwILob, (19) 

Y = iwC = iWEo/b. (20) 

Here EO, ILo are the dielectric constant and perme
ability of free space, 0 is the skin thickness defined 
by (1), and 

'1 = (iwlL/ g)t = (1 +i)/ go (21) 

is the intrinsic impedance of the conducting material 
at the given angular frequency w. 

From familiar transmission line theoryl. we know 
that if the line is terminated in an impedance 

the input impedance will be 

Z I chr1+ K shrl 
Zi=K , (22) 

K chrl+Zl shrl 

where 

r = (YZ)!, K = (Z/ Y)!. (23) 

Thus the ratio of the power dissipated by a current 
I flowing across the groove to the power dissipated 
in the absence of the groove by the same current 
flowing across a flat strip of width b is 

P Re!Z;III2 ReZi 

Po RehblII2 (b/go) 
(24) 

In the special case where the width of the groove 
is comparable to or greater than the skin thickness 
and the depth is much less than the free-space 
wave-length, i.e., b/a"'" 1 and 1/}'«1, we have from 
(19), (20), and (23), on writing }.= (2r/w) (.uoEo)-I, 
the relation 

I rll = (hl/}.) I (1 + o/b) -io/b I t"", (2r1/}.) «1. 

Hence shrl"",rl and chr1"",1, and substituting 
these approximations into (22) we get, after some 

15 Referencl! 10, Chapter VII. 
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manipulation, 

(1/ g) [(b+ 21) / o+i(b/ 0+ 21/ a+ 21b/ (2) ] 

Zi"'" . 
1 +!(i-l) (h/A)21 0 

The second term in the denominator is negligible 
compared with unity under the given assumptions. 
Hence, from (24) the ratio of power dissipated in 
the groove to power dissipated on the plane surface 
is simply 

P /Po= (b+2l)/b. (25) 

Thus the increase in eddy current loss is propor
tional to the additional surface area introduced by 
the walls of the groove, provided b >=:> a. 

For a very narrow crack it is to be expected that 
the shunt capacitance. between the walls will be
come the dominant effect and will ultimately short
circuit the crack. To investigate this we assume now 
that b /0«1 and obtain the following approxima
tions: 

Zl= (b/o)(l+i)/g, 
rl ~ (2rl/}.) (i-l)t(b/ o)-i, 
K ~ -i(A/1f'ga)(i-l)i(b/o)!, 

chrl ~! exp[(hl/}.)(i-l)t(b/ a)-i] ""'shrl, 
Zi~K ~ (1.099 -0.455i) (A/rgo) (b/ a)t. 

The input impedance of a groove of fixed depth 
thus vanishes like (b/o)! when the ratio b/a~O, 
but not so fast as the impedance of a plane strip 
of width b, which vanishes directly as b/a. If b/a 
is so small that the last approximation for Z. holds, 
the ratio of powers is given by (24) to be 

P/Po= 1. 099 (X/d) (b/o)-t. (26) 

V. CONCLUSIONS 

The effect of shallow parallel scratches on the 
surface of a conductor is to increase eddy current 
losses by an appreciable amount if the dimensions 
of the scratches are comparable on the average to 
the skin depth. If the scratches are transverse to 
the direction of induced current flow the increase in 
loss may be anywhere between zero and approxi
mately 100 percent, depending on the ratio of 
r.m.s. surface roughness to skin depth. This in
crease does not depend critically on the exact shape 
of the surface profile, so long as the scratches are of 
approximately equal width and depth. 

The adverse effect on eddy current losses of 
scratches parallel to the current flow is considerably 
less than the adverse effect caused by transverse 
scratches of similar size. Our analysis suggests 
that the increase in relative power dissipation 
resulting from" parallel" grooves or scratches may 
be only slightly more than one-third as great as 
the increase in the transverse case. 

The eddy current dissipation in an isolated nar
row crack transverse to the current is approxi-
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mately proportional to the total surface area of the 
walls, provided that the depth of the crack is much 
less than the free-space wave-length corresponding 
to the given frequency and the width is comparable 
to or greater than the skin thickness. For an ex
tremely narrow crack the ~hunt capacitance be
tween the walls becomes important, and the losses 
are ultimately proportional to the square root of 
the ratio of width to skin thickness. 
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APPENDIX I 

Transformation of the integral 

Iv (V XH)· (V XH*)dv. 

In the integral 

2gP= f (V XH)· (V XH*)dv, 
v 

write 

VXH=VXH.k=VH.Xk, 

(Al) 

where k is the unit vector in the z direction. Then, 

since V Hz 1S normal to k. On applying Green's 
theorem, 

f V U·VWdv= f W(aU/an)ds-i WV'2Udv, 
v s v 

first with U=Hz and W=Hz*, then with U=Hz* 
and W = HZ! we obtain 

2gP = t[i (Hz *(iJHz/iJn)+Hz(iJHz* /iJn»ds 

-i (Hz*V'2H.+H.V'2H.*)dv 1 (A2) 

where n is the outward normal to the surface 3 
bounding the volume V. In virtue of (3) and its 
complex conjugate equation, 

V'2Hz * = - (2i/ (2) Hz *, 
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the volume integral in (A2) vanishes. If the integra
tion is extended over a cell of unit length and of 
width d, the surface integrals over the ends z = con
stant vanish because aH.jaz=O, and the contribu
tions of the side surfaces x = Xo and x = xo+d cancel 
each other on account of periodicity. The fields 
vanish exponentially as 1 y 1-+ 00, so we are left 
with only the integral over the external surface 31 
where lIz =Ho = constant. Hence 

2gp=Ref H.*(iJHz/iJn)ds=ReHo*! (iJH./dn)ds. 
8. 8. 

The last integral may be re-extended over the 
entire surface 3 of the volume under consideration 
since, as before, the net contribution of the sides 
and the surface at infinity will be zero. Once more 
applying Green's theorem, this time with U =Hz 
and W = 1, and then Eq. (3), we finally get 

2gP=ReHo* i (aHz/iJn)ds= ReHo* f
v
V'2H.dV 

= ReHo*i (2ij o2)H.dv 
r 

d f(x) 

= -(2/o2)ImHo*i f Hzdydx, 
o -00 

which is Eq. (6) of Section II. 

APPENDIX II 

Relaxation method applied to the eddy current 
equation. We seek a numerical solution of the 
equation 

iJ2wjax2+ iJ2w/ay2 = (2i/o2)w, (A3) 

which takes the constant value W= WO on the 
boundary y = f(x) , is symmetric with respect to 
the lines x=o and x=td, and vanishes as y-+"":" <X:l. 

The first step is to replace the partial derivatives 
in (A3) by finite differences. Let Wo be the value of w 
at an interior point of a square-mesh net such as 
that of Fig. 2, and let WI. W2, W3, W4 be the sur
rounding values, as in Fig. 6. Then it may be 
shown16 that the finite-difference approximation to 
(A3) is 

4 

! :E Wn -wo[1 + (ih2/202) ] = 0, (A4) 
n=1 

up to terms of order h4, where h is the mesh in
terval. 

The relaxation method of solving (A4) consists 
in the following procedure: Having assumed over 
the given net a solution, however crude, which 

16 Reference 7, p. 20. 
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w. 

FIG. 6. Typical point of a "relaxation net." 

satisfies the boundary conditions, we define at 
each interior point a residual R proportional to the 
left side of (A4). By altering the value of Wo at a 
given point we can reduce the value of the residual 
at that point, at the expense of simultaneous 
changes in the residuals at the immediately adjacent 
points; successive corrections at points where the 
residuals are largest gradually bring us closer to 
the desired solution. Theoretically there exists a 
set of w's for which every residual is zero; in prac
tice,.however, we adopt some limit of tolerance and 
regard the solution as complete when all residuals 
are reduced below this value. 

As an example, to obtain the solution of Fig. 2 
we take a mesh interval h=!o in (A4). Multiplying 
the left side of (A4) by 8 to clear of fractions and 
writing w=u+iv, we define the residual to be 

4 4 

R= (2 L Un -8uo+vo)+i(2 L Vn -uo-8vo). (A5) 
n=I n=l 

We then assume, using as an aid to guessing any 
physical insight or a priori knowledge of tge nature 
of the solution that we may possess, a set of values 
of w and compute the initial residuals by (A5), 
noting that if Wo lies on one of the lateral boundaries 
of symmetry, then W2=Wa. It is convenient to 
decide in advance the number of decimals which 
wil1 be wanted in the solution and then to multiply 
the boundary value Wo by such a factor that the 
actual calculations may be done in integers. There
after the values of wand the residuals are altered 
according to the following scheme, derived from 
(AS) : 

ARo 
-8-i 
+1-8i 

AR1•2• 3•4 

+2 
+2i 

If W2 (or Wa) lies on a boundary of symmetry, then 
the corresponding !:J.R is +4 or +4i, respectively, 
because the change in Wo is reflected on the other 
side of the boundary. 

The degree to which liquidation of residuals can 
ultimately be carried depends on the minimum 
correction we are willing to make in Wj for example, 
if we round off w to the nearest integer we should 
accept residuals whose real and imaginary parts 
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separately do not exceed 4 units, if they are defined 
by (A5). This limit of tolerance was imposed in 
obtaining the solution of Fig. 2. When a solution is 
deemed acceptable, one checks the work by re
computing all residuals directly from the final 
values of w. 

An empirical check on the accuracy of our results 
for the square groove of dimensions 20 X 20 was 
provided by carrying out the complete solution on 
two different nets. The mesh intervals employed 
were h = a and h = H; the corresponding values of 
the power ratio P / Po were 1.54 for the coarse net 
and 1.57 for the fine net. A mesh interval of !a was 
then used for all the rectangular grooves except 
the square one of dimensions !a X !a, in which case 
the interval was 10. 

For the finite-difference approximation analogous 
to (A4) which may be ,used with a triangular-mesh 
net, reference should be had to a text9 on relaxation 
methods. 

APPENDIX m 
Conformal representation of a boundary with rec

tangular grooves. Starting with the complex stream 
function 

W=Hot, (A6) 

which represents a uniform field Ho parallel to the 
x axis, we subject the t-plane to the following con
formal transformations (Fig. 7): 

tl = rI(r) takes a semi-infinite vertical strip of 
width 2a in the t-plane into the entire upper half 
of the t I-plane. 

t2=t2(tl) takes the upper half of the tl-plane 
into a semi-infinite vertical strip of width 2a2 in 
the r2-plane, with a symmetrical rectangular notch 
of height b2 and width 2C2 in the lower boundary. 

Let it be assumed that the following correspond
ences exist between pairs of points in Fig, 7, where 
for reasons of symmetry the notation differs some
what from that employed in Fig. la and in the 
main body of this paper: 

b~blPc2-ib2' 

a~1+=Za2-ib2. 

(A7) 

(A8) 

(A9) 

(AlO) 

Then the required transformations are, in differen
tial form: 

(A11) 

dr2/ dr 1 = C2(r12 -a12)-t(r12_b12)-!(r12 - C12)t, (A12) 

and hence 

(A13) 

where CIt C2, and C=CdC1 are as yet arbitrary 
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constants. From (All) and (AU) and the left 
members of (A7)-(AI0) we easily obtain 

tl=al sin(7rt/2a) 
and 

f
r[Sin2(7rr/2a) -Sin2(7rC/2a)Jl 

S2 = ds, (A14) 
o sin2(7r.\/2a) -sin2(7rb/2a) 

the constant C in (A13) having been put equal to 
unity so that we shall have dsddt~l when Ims is 
large and positive. The constants a, b, and c have 

. ultimately to be evaluated in terms of a2, b2, and 
C2, which specify the dimensions of the groove; 
eviden tly a = a2 if C = 1. 

To simplify writing put 

(J=7rr/2a, {3=7rb/2a, ,,(=7rc/2a. (A1S) 

The substitutions 

t = tan8/tan,,(, k = tan,,( /tan,8 (A16) 
give 

8 

.\2 = (2a/7r) f [(sin2(J-sin2"()/ (sin28- sin2,8) ]td8 
o 

Let 

Then 

t=sn(u, k), u";'sn-1(t, k), 
du = [(1-t2) (1- k2t2) ]-tdt. 

(A17) 

(A18) 

The last integral is an elliptic integral of the third 
kind,17 which will be in the standard form if we 
write 

tan2,,(= -k2sn2(ih, k), 

i.e., recalling (A16), 

(A20) 

sn(ih, k) =i tan{3, cn(ih, k) =sec,8, (A2l) 
dn(ih, k) =sec"(. 

Jacobi's imaginary transformation18 gives 

sn(h, k') =sin{3, cn(h, k') =cos{3, 
dn(h, k') =cos,8 sec,,(, 

where 
k2+k'2= 1. 

From (A22), since 0<,8<7r/2, h is real and 

o <h=am-1({3, k'J <K'. 

17 Reference 12, pp. 522-523. 
18 Reference 12, pp. 505-506. 
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(A22) 

y, Y, 
!, !, 

('J (bJ (tl 

FIG. 7. Conformal transformation of a plane boundary into a 
boundary with regular rectangular grooves. 

Now 

1 

k2sn (ih )cn(ih )dn (ih) 

[ 
e(u-ih) ] 

X t log +uZ(ih) , 
6(u-ih) 

(A23) 

where the modulus of the elliptic functions IS 

understood to be k unless otherwise indicated. It 
will be convenient to use the relation19 

[

dn(h, k')sn(h, k') 
Z(ih,k)=i ----

cn(h, k') 

7rh ] -Z(h, k')--- . 
2KK' 

(A24) 

Substituting (A23) and (A24) into (A19) and em
ploying (A2l) and (A22) to replace the trigono
metric functions of fJ and "( with functions of h 
and k, we obtain after considerable reduction 

a[ e(U-ih)] 
t2=- Au+ilog , 

7r e(u+ih) 
(A2S) 

where 

7rh 2k'2sn (h, k')cn(h, k') 
A =2Z(h, k')+-- . (A26) 

KK' dn (h, k') 

As r varies from 0 to a, t varies from 0 to 00, 

and u from 0 to K to K +iK' to iK'. In tracing the 
variation of .\2 we must be careful to stay on the 
sal11e branch of the logarithmic function. If we do 
so, we find the correspondences in the following 

19 Reference 12. p. 519. 
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table: 

u 

o 0 o o 

c 1 K aAK/7r 

b l/k K+iK' aA[K+iK']/7r-aih/K 

a oc; iK' aAiK' /7r-aih/ K +a 

If we now introduce the constants a2, b2, C2 which 
specify the dimensions of a typical groove in Fig. 7'c, 
we see from (A8)-(A10) that the following relations 
must hold: 

(A27) 

ah/K-aAK'/7r=b2, (AZ8) 

a (AZ9) 

The scale factors a and a2 are equal, as previously 
noted; hand k depend on the ratios cd a2 and 
bda2. Elimination of A from (AZ7) and (AZ8) gives 

h= (C2/a2)K'+(b2/a2)K; (A30) 

this value of h may be substituted into the expres
sion for A given by (AZ9). Thus, employing (AZ6) 
with (AZ7), 

Zk'2sn (h, k')cn(h, k') 7r(bda2) 
ZZ(h, k') - + O. (A31) 

dn(h, k') K' . 

Comparing Fig. 7c with Fig. la, we see that the 
quantities a2, b2, C2 correspond to !d, b, !a, respec
tively, so that (A30) and (A31) are equivalent to 
(15) and (16) of Section III. 

If q; and Ware defined by Eqs. (10) and (12) of 
Section III, it follows from the Cauchy-Riemann 
relationslO that the magnitude of the field repre
sented by Wat any point of the r2-plane is just 

H= !aW/ar2!= !Ho! !ar/ar2!. 

Employing Eq. (13) to calculate the relative power 
dissipation in the groove!l surface, we have 

1i"!Sin2(7rr /2a) -sin2(7rb/2a) I i 
=- !drl, (A3Z) 

a 0 sin2(7rt/2a) -sin2(7rc/2a) 

if we make use of (A14). We introduce again the 
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substitutions (A1S) and (A16) and obtain 

t2 tan 21' CSC
2{3\ 

1+t2 tan2 'Y 

In order to make use of our previous work, we shall 
find it convenient to have the abbreviations 

U1.1/k=K', 

VI. 11k = [ cos2 'Y 
A sin{3 cos'Y] 7rk sin{3 cos I' 
--------K'+ ; 

2 tan2')' 2K tan2')' 

U1/k.",=K, 

A sin{3 cos')'] 7r sin(1 cos,), 
----K+ . 

Z tan2')' 2 tan2')' 

Hence from (A33) 

P 2 Sin(1[ tan2
,), 

-=---- UO,l/k----VO,l/k 
Po 7r cos')' sin2(1 

tan
2

')' ] 
- U1/k,oo+--V1/k,oo 

sin2(1 

2K'[Sin2(1- sin2'Y] AK' h 
=- +---+1. 

7r sin(1 cos')' 7r K 

If we substitute for A from (AZ7) and for k from 
(A30), the expression for P/Po simplifies to 

~ = 2K'[Sin
2
(1- sin2'Y]+ 1- b2 , 

Po 7r sin(1 cos'y a2 

which is equivalent, by (A16) and (A22), to Eq. (14) 
of Section 111. 
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