Resistivity of a sinusoidally corrugated surface

Gennady Stupakov SLAC

April 17, 2014

Introduction

From ChrisA's talk. Paper by S. Morgan, Journal of Applied Physics 20, 352 (1949).

Effect of Copper Roughness on Resistivity

There is an important parameter missing in this plot: corrugation slope $\sim \Delta / \lambda$.

Model

Assume the sin profile of the surface

$$
y_{0}(x)=h \cos \left(\frac{2 \pi x}{\lambda}\right)
$$

These are grooves parallel to z-axis.
5 roughness profiles

For $2 \pi h / \lambda=4$ the steepest slope angle is 76°.

Direction of the magnetic field

Magnetic field can be considered uniform at distance from the surface \gg corrugation scale (but much smaller than the RF wavelength). There are two independent directions (polarizations) of the magnetic field. Far from the surface the magnetic field approaches a constant value

$$
\boldsymbol{H}=\hat{x} H_{0}
$$

or

$$
\boldsymbol{H}=\hat{z} H_{0}
$$

x-polarization

z-polarization

Small skin depth limit

Assume small skin depth, $\delta \ll h, \lambda / 2 \pi$. The boundary condition for the magnetic field on the surface is

$$
\left.H_{n}\right|_{\text {surface }}=0
$$

Resistivity increase factor

$$
\eta=\frac{\int_{\text {period }} H_{t}^{2} d s}{H_{0}^{2} \lambda}
$$

We will calculate η for both polarizations, η_{x}, η_{z}. If magnetic field is randomly oriented relative to the grooves, averaging over all possible orientations gives

$$
\eta=\frac{1}{2}\left(\eta_{x}+\eta_{y}\right)
$$

For the z-polarization the magnetic field penetrates the grooves, $\boldsymbol{H}(x, y)=\hat{z} H_{0}$ for $y>y_{0}(x)$, and

$$
\eta=\frac{1}{\lambda} \int_{\text {period }} d s
$$

Small skin depth limit $-x$ polarization

For x-polarization one has to solve the Poisson equation above the metal, $y>y_{0}(x)$:

$$
\boldsymbol{H}(x, y)=-\hat{\mathbf{z}} \times \nabla \psi(x, y), \quad \Delta \psi=0
$$

with the boundary conditions

$$
\psi_{\text {surf }}=\text { const },\left.\quad \psi\right|_{y \rightarrow \infty} \rightarrow H_{0} y
$$

The function ψ is periodic along x with the period λ. I used computer code FreeFem++ (http://www.freefem.org/ff++/index.htm) to numerically solve the Poisson equation.

Case $2 \pi h / \lambda=2$

Field lines

Magnetic field on the surface

Increase of resistivity

How to solve 3D case in the limit of small skin depth?

3D geometry metal surface

$$
y=h(x, z)
$$

Magnetic field in free space

$$
\boldsymbol{H}(x, y, z)=\nabla \psi(x, y, z), \quad \Delta \psi=0
$$

Boundary condition on the surface

$$
\left.\frac{\partial \psi}{\partial n}\right|_{y=h(x, z)}=0
$$

Boundary condition at infinity, $\boldsymbol{H} \rightarrow \hat{\boldsymbol{x}} \mathrm{H}_{0}$

$$
\left.\psi\right|_{y \rightarrow \infty} \rightarrow H_{0} x
$$

Solve the Poisson equation in a large $0<x<a, 0<z<b$ area (say, with periodic boundary conditions) and compute $\int_{\text {surf }} H_{t}^{2} d S / H_{0}^{2} a b$.

Finite skin depth case, z-polarization

For the z-polarization the magnetic field penetrates the grooves, $\boldsymbol{H}(x, y)=\hat{\mathbf{z}} H_{0}$ for $y>y_{0}(x)$. In the metal

$$
\Delta H_{z}=\frac{2 i}{\delta^{2}} H_{z}
$$

From Morgan's paper

$$
\eta=\frac{2}{H_{0} \lambda \delta} \operatorname{Im} \int_{\text {period }} d x \int_{-\infty}^{y_{0}(x)} H_{z} d y
$$

Finite skin depth case, z-polarization

Case $2 \pi h / \lambda=2,2 \pi \delta / \lambda=0.6$

Contour lines of $\mathrm{Re} \mathrm{H}_{\mathrm{z}}$

Contour lines of $\operatorname{Im~} \mathrm{H}_{\mathrm{z}}$

Finite skin depth case, z-polarization

This is the case studied in Morgan's paper (for different profiles of grooves).

Note that $\lambda / 2 \pi \delta=h / 2 \delta$. In the limit $\delta \rightarrow 0$ we previously found $\eta_{z}=1.68$.

Finite skin depth case, x-polarization

Take

$$
\boldsymbol{H}=-\hat{\mathbf{z}} \times \nabla \psi(x, y)
$$

At $y \rightarrow \infty$ we have $\psi \rightarrow H_{0} y$, and at $y \rightarrow-\infty$ we have $\psi \rightarrow 0$. The equation for ψ

$$
\Delta \psi=s \frac{2 i}{\delta^{2}} \psi
$$

where the function $s=1$ in the metal and zero otherwise.

Finite skin depth case, x-polarization

In the limit $\delta \rightarrow 0$ we previously found $\eta_{x}=1.27$

