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1 INTRODUCTION

The design of Linac Coherent Light Source (LCLS) at
SLAC requires the energy spread of the beam to be less
then 0.1% [1]. Longitudinal wakefields in the accelerator
tend to redistribute the bunch energy and, if large enough,
can cause degradation of the beam performance. It has been
pointed out by Bane, Chao and Ng [2] , that one of the ma-
jor sources of wakefields for the LCLS might be the wall
surface roughness in the undulator. The model developed
in Ref. [2] assumes that a rough surface can be represented
as a collection of bumps of relatively simple shapes (hem-
isheres, half cubes, etc.), and the impedance is calculated a
sum of impedances for each shape with account of density
of the bumps per unit area.

In this paper, we develop a theory of impedance due to
the surface roughness of a perfect conductor, using a small-
angle approximation for the wall surface. Our final result
is the expression for the impedance in terms of the spectral
function of the surface profile. The formula represents the
contribution of different scales, and can be used for esti-
mation of the impedance based on statistical properties of
the surface. A simple model of a fractal random surface is
considered, and it is shown that the impedance is propor-
tional to the rms square of the bumps height divided by the
correlation length of the bumps. The result is compared to
the Bane-Chao-Ng model.

2 ASSUMPTIONS AND STATISTICAL
PROPERTIES OF A ROUGH SURFACE

The detailed derivation of the impedance of round pipe with
rough surface can be found elsewhere [3]. Here we outline
the main assumptions and present the final formula for the
longitudinal impedance.

Our approach is based on the assumption of small-angle
approximation. If we assume that the rough surface is given
by equation y = h(z, z), where z, y and z are the cartesian
coordinates, and h is the local height of the surface, then the
small-angle approximation means that the angle between
the normal to the surface and the vertical direction (y axes)
is much smaller than unity, or

IVh| < 1. M

This assumption allows to develop a rather general the-
ory of impedance, which with a good accuracy works even
when (|Vh| ~ 1).

In addition to Eq. (1), we also require that the height of
the bumps and their characteristic size g be small compared

to the radius of the pipe by,

Evidently, this inequality is easily satisfied for realistic val-
ues of g, h and bg.

There is one more condition that simplifies the consider-
ation. Typically, the size of the surface bumps g is on the
order of microns, and the bunch length ¢, in FEL is of the
order of at least tens of microns. This means that the char-
acteristic frequency of interestw ~ ¢/o . is small compared
toc/g,

w<Kelg. 3)

To describe the statistical properties of a rough surface,

we introduce the correlation function K (z, y) such that

K(l. - IJ,Z - Z,) = <h($l,zl)h(1‘,z)> ) (4)

where the angular brackets denote averaging over possi-
ble random profiles h(z, z). Eq. (4) assumes that statisti-
cal properties of the surface do not depend on the position,
which is true due to the macroscopic nature of the rough-
ness. An important statistical characteristic of the rough-
ness is the spectral density (or spectrum) R(k ., k), de-
fined as a Fourier transform of the correlation function,

R(ky, k) = /da: dz K (x,z)e mem"ir=2  (5)
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If the surface is statistically isotropic (all direction in the
x — y plane are statistically equivalent), the spectrum R
depends only on the absolute value of the wave number
k= /K2 + k2, R = R(k)

The main result of Ref. [3] is that the longitudinal
impedance of a circular pipe of radius by with a rough
perfectly conducting surface characterized by the spectral
function R(k,, k) in the frequency range limited by the
condition (3) is given by the following equation:
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where now the z-axes is directed along the pipe axes, and
the x axes is locally directed along the azimuthal coordi-
nate #. We note again, that due to assumed smallness of
the surface structures, we can use the local Cartesian coor-
dinate system z, y and z in Egs. (4) — (6) instead of the
global cylindrical coordinate system 6, r and z.

Eq. (6) tells that the contribution to Z of roughness
in longitudinal (z) and azimuthal directions are not equal:
the presence of the factor x2 in the integrand means that
bellow-type variations on the surface are more dangerous
than ridges on the surface going in the longitudinal direc-
tion.
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3 SURFACE MODELS

As a model of a rough surface, we consider here a power
spectrum, limited at small wavelengths, R(x) = Ax~? for
Kk > kg,and R(k) = 0 for k < ko, where Kk is the minimal
value of spectrum, ¢ > 0 is a power factor, and A defines
the amplitude of the roughness. The parameter x o can be
expressed in terms of the characteristic correlation length,
[, of the random profile, kg ~ m/l.. We can also relate
the factor A to the rms height d of the roughness, using the
relation
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For the convergence of the integral we have to require ¢ >
2. The shape of the surface for two different values of ¢

Figure 1: Fractal surfaces for ¢ = 3.5 and ¢ = 4. Smaller
values of g give more ”spiky” profiles.

obtained with a help of computer code described in [4] is
shown in Fig. 1. It turns out, that increasing the value
of ¢ makes the surface smoother. Using Eq. (6) we can
calculated the impedance of such surface,
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Again, for convergence, we need to require that ¢ > 3, oth-
erwise the integral diverges as k — oo. This requirement
is stronger than the convergence condition for Eq. (7), and
is due to a relatively slow decay of the spectrum at large .

4 COMPARISON WITH BANE-NG-CHAO
MODEL

To compare our result with Ref. [1], we write down here
the impedance from [1]
ikfaZo
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Z(w) = )
where a is the height of the bumps, f is a form-factor
that depends on the choice of specific shape modeling the
bumps (f varies from about 5 to 20 for different shapes
[2]), and « is the filling factor characterizing the number of
bumps per unit area. For numerical estimate in [1] it was
assumed that f = 5 and o = 0.5. To compare this result to

our model, we have to express the rms height d in terms of
a; a simple calculation gives d = \/a/2d.

Returning to the fractal model, we will chose ¢ = 4
as reasonable approximation for a real surface profile. A
choice of the correlation length /. that would be compati-
ble with [1] requires that /. be of the order of the bump’s
height, that is ko ~ 7/d. This reduces Eq. (8) to
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Comparing Egs. (9) and (10), we see that they have same
scaling, but different numerical factors. Eq. (10) gives
about three times larger impedance (for kg ~ 7/d) than
quoted in [1].

We want to emphasize here that the right choice of the
correlation length [, is critical for the estimation of the
impedance (8). Although we do not have detailed data for
the roughness spectrum of a real surface (which, of course,
depends on the particular manufacturing process involved),
there are some indication, that in many cases [ . may be 10-
30 times larger than assumed above [5]. If that assumption
is correct, then the impedance would be about an order of
magnitude smaller then estimated above.

5 CONCLUSIONS

We have developed a theory of impedance of perfectly con-
ducting rough surface in small-angle approximation. The
effect of finite conductivity is independent of the geomet-
rical wake, and is additive to the one found in this paper.
Using as an example a statistically fractal surface with a
power spectrum, we calculated the longitudinal impedance
as a function of statistical characteristics of the surface.

6 ACKNOWLEDGMENT

The author is thankful to K. Bane, M. Cornacchia and
P. Emma for useful discussions.

This work was supported by Department of Energy con-
tract DE-AC03-76SF00515.

7 REFERENCES

[1] Linac Coherent Light Source (LCLS) Design Study Report.
SLAC-R-521, Apr 1998. 381pp.

[2] K.L.F. Bane, CK. Ng and A.W. Chao. SLAC-PUB-7514
(1997).

[3] G.V.Stupakov, Preprint SLAC-PUB-7908, 1998.

[4] R.E.Maeder. The Mathematica Programmer II, Academic
Press, San Diego, 1996.

[5] D.J. Whitehose. Handbook of Surface Metrology, 10P Pub-
lishing, 1994.



