Laser-engineered surface structures

 (LESS)
What is the beam impedance?

O. Berrig, N. Biancacci, F. Caspers, A. Grudiev, E. Metral, B.Salvant, G.Stupakov

LESS (laser-engineered surface structures)

http://indico.cern.ch/event/375755/attachments/749006/1027567/CERN talk 26-Feb-2015-.pdf

In order to reduce the beam induced heating from electron-cloud in IP2 and IP8, it is proposed to make a surface treatment of the LHC vacuum chambers that will reduce the secondary electron yield and hence electron-cloud.

I|cern.ch\dfs\Divisions\EST\Groups\SM\ThinFilms\LESS\SEM Dundee\EDMS-1533336 SEM observation of laser-engineered surface structures.pdf (S. Calatroni TE/VSC)

In order to reduce the beam induced heating from electron-cloud in IP2 and IP8, it is proposed to make a surface treatment of the LHC vacuum chambers that will reduce the secondary electron yield and hence electron-cloud.

LESS (laser-engineered surface structures)

$$
\begin{aligned}
\text { Area } & =2 \mathrm{um} \cdot 40 \mathrm{um} \\
& =8010^{-12} \mathrm{~m}^{2}
\end{aligned}
$$

The imaginary impedance is approximately proportional to the area of the grooves, see: https://cds.cern.ch/record/250977/files/p95.pdf S.S.KURENNOY and G.V. STUPAKOV

Since the area of the grooves is approximately equal to the area of the roughness, we will in the following calculate the imaginary impedance of the grooves, and just double it to get the total imaginary impedance !

We will also not do calculations for longitudinal grooves, because they will in any case have impedances that are less than transverse grooves!

Imaginary impedance of transverse grooves

For the high energy LHC we can ignore the space charge impedance i.e. the first term with v^{2} in the denominator

$$
Z_{L} / n \cong-j \cdot \frac{Z_{0}}{\beta \cdot \gamma^{2}} \cdot\left[\frac{1}{2}+\ln \left(\frac{b}{a}\right)\right]+j \cdot \frac{Z_{0} \cdot \beta \cdot L}{2 \cdot \pi \cdot R} \cdot \ln \left(\frac{b^{\prime}}{b}\right)
$$

http://cdsweb.cern.ch/record/118026/files/p1.pdf (page 87)

```
ZL = Longitudinal impedance. It is a function of frequency ZL(f)
```

$n=(f / f r e v)$
frev $=$ Revolution frequency. For the LHC it is 11.2455 kHz
$\beta=$ Relativistic beta ~ 1 for LHC
Z0 $=$ Intrinsic impedance ($=\mu 0 \mathrm{C} \simeq 120 \pi$)
b = Radius of the inner of the bellow. Calculations based on smallest distance to LHC beam
screen($=36.9 / 2 \mathrm{~mm}$. http://ab-div.web.cern.ch/ab-div/Publications/LHC-DesignReport.html)
$b^{\prime}=$ Radius of the outer fold of bellow. 4 different cases: groove of 10,20,30 or 40 um deep.
$\mathrm{L} \quad=$ Accumulated length of the bellow
$R=$ Radius of the accelerator. For LHC it is $(26659 m / 2 \pi)$

Imaginary impedance of transverse grooves

$$
Z_{L} / n \cong j \cdot \frac{Z_{0} \cdot \beta \cdot L}{2 \cdot \pi \cdot R} \cdot \ln \left(\frac{b+d}{b}\right)
$$

http://cdsweb.cern.ch/record/118026/files/p1.pdf (page 87)

Derived for rectangular bellows
Corresponds to calculation by S. Kurennoy and G. Stupakov:
http://www.slac.stanford.edu/~stupakov/my papers/low-freq impedance.ps See the comparison: \lfloor ไcern.ch\dfs\Departments\AB\Groups\dropbox\berrig\LESS.cdf

Also corresponds to Chao: $Z_{L} \approx-i \omega Z_{0} \frac{g d}{2 \pi b c}$
http://www.slac.stanford.edu/~achao/WileyBook/WileyChapter2.pdf (see formula 2.119)

Verified by mode matching technique by N.Biancacci:

Imaginary impedance of transverse grooves

$$
Z_{L} / n \cong j \cdot \frac{Z_{0} \cdot g \cdot d}{2 \cdot \pi \cdot R \cdot b}
$$

RESULTS:

LHC longitudinal impedance (flat top) is $\mathbf{9 6} \mathbf{~ m O h m}$ HL-LHC longitudinal impedance is $\mathbf{9 3} \mathbf{~ m O h m}$

One groove (2 um wide for every 20 um)

1) 10 um groove $Z_{L} / n=0.10 \mathrm{~m} \Omega$
2) 20 um groove $Z_{L} / n=0.20 \mathrm{~m} \Omega$
3) 30 um groove $Z_{L} / n=0.30 \mathrm{~m} \Omega$
4) 40 um groove $Z_{L} / n=0.40 \mathrm{~m} \Omega$
\|cern.ch\dfs\Departments\AB\Groups\dropbox\berrig\LESS.cdf

Impact on the imaginary part of transverse impedance?

$Z_{\perp}=\frac{2 c}{w \cdot b^{2}} \cdot Z_{\|} \leftarrow$ Classical thick wall formula for circular vacuum pipe
A.Wolski BEAM DYNAMICS p. 503

Verified by N.Biancacci with mode matching technique:

Impact on the imaginary part of transverse impedance?

$Z_{\perp}=\frac{2 c}{w \cdot b^{2}} \cdot Z_{\|} \leftarrow$ Classical thick wall formula for circular vacuum pipe A.Wolski BEAM DYNAMICS p. 503

Additional impedance from grooves and roughness:
$\mathbf{8 0} \mathbf{k O h m} / \mathrm{m}$ (Including a scaling factor of 4.1 for beta-functions)
Notice also that the beta-functions for-LHC and HL-LHC in IP2 and IP8 are identical
LHC budget for transverse impedance:
$\mathrm{Zx}=28.8 \mathrm{M} \Omega / \mathrm{m}(\mathrm{HOR})$ and $\mathrm{Zy}=\mathbf{2 2 . 6} \mathrm{M} \Omega / \mathrm{m}$ (VER)
HL-LHC budget for transverse impedance:
$\mathbf{Z x}=\mathbf{2 0 . 8} \mathbf{~ M} / \mathbf{m}$ (HOR) and $\mathbf{Z y = 1 7 . 8} \mathbf{M} \Omega / \mathrm{m}$ (VER)

Evaluation of resistive part of the beam impedance (measurements at room temperature)

	$\begin{array}{c}\text { Bulk } \\ \text { Resistivity }[\Omega \mathrm{m}]\end{array}$	$\begin{array}{c}\text { Roughness } \\ \text { r.m. } \mathrm{RA}[\mathrm{m}]\end{array}$	$\begin{array}{c}\text { Surface resistance at } 7.8 \mathrm{CHz} \\ \text { Calculated }[\Omega]\end{array}$	
Measured $[\Omega]$				

The calculated impedance is done with Hammerstad's correction coefficient:
Rs = Rs_ideal (T,RRR) • Ksr (roughness, skin depth(Rs_ideal(T,RRR)))
The correction coefficient is:

$$
K_{s r}=1+\left(\frac{2}{\pi} \cdot \arctan \left[1.4\left(\frac{\Delta}{\delta_{s}}\right)^{2}\right]\right) \longleftarrow \text { Empirically, max }=2
$$

Example:
$\mathrm{f}=7.8 \cdot 10^{9} \mathrm{~Hz} ; \mathrm{w}=2 \pi \mathrm{f} ; \mu=1.256629 \cdot 10^{-6} \mathrm{Henry} / \mathrm{m} ; \rho=1.68^{*} 10^{-8} \Omega \mathrm{~m} ; \Delta=4.09^{*} 10^{-7} \mathrm{~m} ; \delta=\sqrt{\frac{2 \rho}{\mathrm{w} \mu}}$ Rs_Ideal $=2.27 \cdot 10^{-2} \Omega$
Ksr= 1.25813050301
Rs=Rsideal $\mathrm{Ksr}=2.86 \cdot 10^{-2} \Omega$

Evaluation of resistive part of the beam impedance This time at 20 K , i.e. the condition in the triplets

 Applying Hammerstad's correction coefficientto the triplets at 20 K with a roughness of 10 um Applying Hammerstad's correction coefficient
to the triplets at 20 K with a roughness of 10 um

$$
K_{s r}=1+\left(\frac{2}{\pi} \cdot \arctan \left[1.4\left(\frac{\Delta}{\delta_{s}}\right)^{2}\right]\right)
$$

Calculation for the triplets:
$\mathrm{f}=2.5 \cdot 10^{9} \mathrm{~Hz} ; \mathrm{w}=2 \pi \mathrm{f} ; \mu=1.256629 \cdot 10^{-6} \mathrm{Henry} / \mathrm{m}$;

$\rho=7.7 \cdot 10^{-10} \Omega \mathrm{~m}$ (* conductivity copper at 20 K *)
$\Delta=10 \mu \mathrm{~m} \quad$ (* roughness for LESS *)
$\delta=\sqrt{\frac{2 \rho}{W} \mu} \quad\left(*\right.$ skin depth $\left.{ }^{*}\right)$
Ksr= $2.0 \leftarrow$ could be a factor 5 (* Private communication from F.Caspers *)
We will in the following use a factor 5 in order to be safe !

$\Delta=10 \mu \mathrm{~m}$	(* roughness for
$\delta=\sqrt{\frac{2 \rho}{W}}$	$\left({ }^{*}\right.$ skin depth $\left.{ }^{*}\right)$

\qquad

Evaluation of resistive part of the beam impedance This time at 20 K , i.e. the condition in the triplets

Effect of Copper Roughness on Resistivity

Rs = Rs_ideal (T,RRR) * Ksr (roughness, skin depth(Rs_ideal(T,RRR)))

Heat dissipation before LESS treatment

(at 20 K , i.e. the condition in the triplets)

Power dissipated by the beam in the beam screen in mW / m (for 2 beams)

Beam screen	Radius (mm)	2012 4 TeV 1374b $1.7 e 11$ 1.25 ns	2015 6.5 TeV 2248b 1.2 e 11 1.25 ns	Nominal 7TeV 2808b 1.15e11 1 ns	HL-LHC 7TeV 2748b 2.2 e 11 1.08 ns
Arc ${ }^{(*)}$	18.4	187	176	290	927
Current Q1 ${ }^{(*)}$	24	143	135	222	710 Valid for
Current Q2-Q3 ${ }^{(*)}$	18.95	181	171	282	900 IP2 and
New Q1 ${ }^{(* *)}$	49	-	-	151	483
New Q2-Q3 ${ }^{(* *)}$	59	-	-	126	401

${ }^{(*)}$ Assumes 1 weld (2 mm wide) on the side of the beam screen ${ }^{(* *)}$ Assumes 2 weld (4 mm wide) on each side of the beam screen
https://indico.cern.ch/event/450955/ (B. Salvant)

What is the effect on beam heating?

$$
P_{l o s s / m}=\frac{1}{C} \Gamma\left(\frac{3}{4}\right) \frac{M}{b}\left(\frac{N_{b} e}{2 \pi}\right)^{2} \sqrt{\frac{c \rho Z_{0}}{2}} \sigma_{t}^{-3 / 2}
$$

http://ibic2013.org/prepress/papers/thbl1.pdf

 (E.Metral)
Where

$C=26658.883 \mathrm{~m}$ is the LHC circumference,
$\Gamma=$ the Euler gamma function
$\mathrm{M}=$ the number of bunches (nominal LHC: $\mathrm{M}=2808$)
$b=$ the beam screen half height (assumed to be 18.4 mm)
$\mathrm{N}_{\mathrm{b}}=$ the number of protons per bunch (nominal LHC $\mathrm{N}_{\mathrm{b}}=1.1510^{11}$)
$c=$ the speed of light
$\rho=$ The resistivity (assumed to be $7.710^{-10} \Omega \mathrm{~m}$ for copper at 20 K and 7 TeV) $Z_{0}=$ the free-space impedance
$\sigma_{t}=\mathrm{rms}$ bunch length (expressed in unit of time) (nominal LHC: $\sigma_{t}=0.25 \mathrm{~ns}$) NB! The power loss needs to be multiplied by 2, because there are 2 beams

Heat dissipation Before LESS After LESS ~0.9 W/m $\quad 1.7 \mathrm{~W} / \mathrm{m}$ \uparrow

The resistivity of the copper is increased by a factor 5 and therefore the power loss by the copper increases by a factor $\sqrt{5} \sim 2.24$. Since only the copper is treated and not the welds - and that the copper contributes to 70% of the $0.9 \mathrm{~W} / \mathrm{m}$ - then the heat dissipation after LESS treatment is $0.9 *(1.0-0.7)+0.9 * 0.7^{*} 2.24 \sim 1.7 \mathrm{~W} / \mathrm{m}$

Power loss [W/m] (25ns, 2.2E11, 2748)	E-cloud IR28:8
Q1 (a/b) (SEY=1.1 -2 beams)	2.3
Q2 (a/b) (SEY=1.1 -2 beams)	$3.4 / 5.4$
Q3 (a/b) (SEY=1.1-2 beams)	3.9

Impedance concerns

Will the LESS treatment affect the RRR ? Answer from meeting: probably with a factor 2 , corresponding to a factor V2 ~ 1.4 in effect. We consider that since we already have a safety factor 5 in the resistivity; then it includes the factor 2

- There is a weld of steel on the side of the beam screen. What if the steel is spread out on the surface of the copper as a result of the LESS treatment - will that increase the resistance? Answer from meeting: The weld will not be treated
- The nominal thickness of the copper layer is 75 um, but there are variations, which means that we can only guarantee 50 um copper coating. What is the LESS treatment occasionally goes deeper than 50 um? Answer from meeting: The grooves are not part of the scheme to reduce the SEY. They only provide material for the roughness. It is already planned to reduce the depth of the grooves

Other comments

Depth of grooves - can we get the same SEY? Answer from meeting: The grooves are not part of the scheme to reduce the SEY. They only provide material for the roughness. It is already planned to reduce the depth of the grooves

Angle of grooves - are perpendicular grooves best for reducing SEY?

- Is it the grooves themselves or the roughness of the surface that reduces SEY? Answer from meeting: It is only the roughness which is important
- Will the LESS treatment create dust? Answer from meeting: The concern about the dust is well known and could be a showstopper

Conclusion

- Longitudinal grooves are better than transverse grooves i.e. less impedance

Transverse grooves give an increase of $\sim 0.4 \%$ in the imaginary part of the longitudinal impedance ($\sim 0.4^{*} 100 / 95$). The roughness adds another 0.4% The total longitudinal impedance is increased by 0.8%

- LHC: $Z x=28.8 \mathrm{M} \Omega / \mathrm{m}, \mathrm{Zy}=22.6 \mathrm{M} \Omega / \mathrm{m}$ HL-LHC: $\mathrm{Zx}=20.8 \mathrm{M} \Omega / \mathrm{m}, \mathrm{Zy}=17.8 \mathrm{M} \Omega / \mathrm{m}$.
Transverse impedance increased $80 \mathrm{k} \Omega / \mathrm{m}$ versus $\sim 20 \mathrm{M} \Omega / \mathrm{m}$ i.e. ${ }^{\sim} 0.4 \%$ increase
- We assume that the LESS treatment gives a factor 5 increase in resistivity
- The factor 5 increase in resistivity gives a factor 2.24 increase in heat deposition. Giving roughly $1.7 \mathrm{~W} / \mathrm{m}$ in heat deposition, which is lower that the heating from e-cloud: 2-4 W/m

Vacuum chamber

Table 2.4: LHC storage ring parameters

Geometry			Injection
Collision			
Effective vacuum screen height (incl. tol.)	$[\mathrm{mm}]$	44.04	
Effective vacuum screen width (incl. tol.)	$[\mathrm{mm}]$	34.28	

Power loss is proportional to number of bunches

$$
\text { I1[t_] : }= \begin{cases}0 & t \leq 0.0 \\ 1 & 0.0<t<0.5 \\ 0 & \text { True }\end{cases}
$$

$$
\text { I2[t_] }:= \begin{cases}0 & \multicolumn{1}{l}{\begin{array}{l}
1 \leq 0.0 \\
1
\end{array} \quad 0.0<t<0.5} \\
0 & 0.5 \leq t \leq 1.0 \\
1 & 1.0<t<1.5 \\
0 & \text { True }\end{cases}
$$

Power1 $=\frac{R}{T} \int_{0}^{T} I 1[t]^{2} d t$
0.16666666667

Power1 $=\frac{R}{T} \int_{0}^{T} I 2[t]^{2} d t$
0.333333333333
$\mathrm{T}=3$; (* We assume that the currents repeat, with the repetition time T *)
$\mathrm{R}=1$; (* Resistance *)

$$
\frac{\Delta \mathscr{E}}{L}= \begin{cases}-\frac{2 q^{2}}{b^{2}} & \text { if } \quad \sigma_{z} \ll \chi^{1 / 3} b, \\ -\frac{1}{2 \pi} \Gamma\left(\frac{3}{4}\right) \frac{q^{2}}{b \sigma_{z}^{3 / 2}} \sqrt{\frac{c}{2 \pi \sigma}} & \text { if } \\ \sigma_{z} \gg \chi^{1 / 3} b,\end{cases}
$$

(2.194)

http://www.slac.stanford.edu/~achao/WileyBook/WileyChapter2.pdf

$P_{\text {loss } / m}=\frac{1}{C} \Gamma\left(\frac{3}{4}\right) \frac{M}{b}\left(\frac{N_{b} e}{2 \pi}\right)^{2} \sqrt{\frac{c \rho Z_{0}}{2}} \sigma_{t}^{-3 / 2}$

http://ibic2013.org/prepress/papers/thbl1.pdf (E.Metral)

Where

$\mathrm{C}=26658.883 \mathrm{~m}$ is the average LHC radius,
$\Gamma=$ the Euler gamma function
$M=$ the number of bunches (nominal LHC: $M=2808$)
$b=$ the beam screen half height (assumed to be 18.4 mm)
$\mathrm{N}_{\mathrm{b}}=$ the number of protons per bunch (nominal LHC $\mathrm{N}_{\mathrm{b}}=1.1510^{11}$)
$c=$ the speed of light
$\rho=$ The resistivity (assumed to be $7.710^{-10} \Omega \mathrm{~m}$ for copper at 20 K and 7 TeV)
$Z_{0}=$ the free-space impedance
$\sigma_{t}=\mathrm{rms}$ bunch length (expressed in unit of time) (nominal LHC: $\sigma_{t}=0.25 \mathrm{~ns}$)

