

Mesures magnétiques d'un quadripôle Q120N

R. Chritin / AT-MTM

Mots clés: Mesures magnétiques, PS, quadripôle, Q120, transfert

<u>Distribution</u>: AT-MTM personnel scientifique & R. Chritin, J-M. Dutour, P. Leclère, G. Arduini, D. Bodart, I. Efthymiopoulos, D. Gerard, M. Gomez De Faria, W. Kalbreier, S. Ramberger, T. Zickler, P. Ziegler

Résumé:

Mesures d'un quadripôle de type Q120N afin d'en déterminer les caractéristiques magnétiques précises, et de les comparer aux caractéristiques attendues.

1.	INT	RODUCTION	2
2.	PRI	NCIPE ET PRÉCISION DES MESURES	3
3.	MES	SURES MAGNÉTIQUES	5
	3.1	Homogénéité du gradient au centre sur X à I = 400 et 800 A	5
	3.2	Homogénéité du gradient au centre sur Y à I = 400 et 800 A	5
	3.3	Homogénéité du gradient intégré sur X à I = 400 et 800 A	6
	3.4	Homogénéité du gradient intégré sur Y à I = 400 et 800 A	6
	3.5	Courbes de magnétisation et longueurs équivalentes	.7
	3.6	Tableau récapitulatif	7
4.	CON	ICLUSION	8

1. INTRODUCTION

Le quadripôle de type Q120N est destiné à la ligne de transfert vers la zone expérimentale Est du PS. Cet aimant est une nouvelle fabrication selon spécification de la référence [1]. Il a été mesuré pour en connaître les caractéristiques réelles et les comparer aux anciennes valeurs des anciens aimants de même type (réf. [2]).

2. PRINCIPE ET PRÉCISION DES MESURES

2.1 Présentation

2.1.1 Système de coordonnées et alignement

Les supports de mire pour cet aimant n'étant pas disponibles, l'alignement a été réalisé en prenant pour référence les pôles de l'aimant. La précision de positionnement estimée de \pm 0,15 mm était suffisante pour ce type de mesure.

Le système de coordonnées et les polarités de branchement utilisés pour cet aimant apparaissent sur la photo ci-dessous, prise sur notre banc de mesure.

2.2 Principe et précision des mesures

2.2.1 Mesure du gradient au centre

Le gradient au centre est mesuré avec la bobine courte (3 cm) GLC1/C, incluse au centre de la bobine longue (2×1 m) GLC1/L.

Le principe de mesure est basé sur l'intégration de la tension induite (avec un intégrateur digital type AT-680-2036 de fabrication CERN (VFC de 1 Mhz) apparaissant aux bornes d'une bobine en rotation dans un champ magnétique fixe. La mesure s'effectue en faisant tourner 4 fois la bobine par pas de 90°, tel que:

$$G_{(0,0,0)} = \frac{I_{th}}{4V} \cdot \sum_{n=1}^{n=4} \left| \int U_n dt / I_{mes} \right| \quad [T/m]$$

Avec : Ith Courant théorique auquel on veut normaliser la mesure.

- $\begin{array}{ll} V & \quad \mbox{Coefficient de calibration de la bobine GLC1/C.} \\ (V = 0.71824 \ . \ 10^{^3} \ m^3 \ et \ \middle| \ \epsilon_v \ \middle| \le 3 \ . \ 10^{^{-3}}). \end{array}$
- $I_{mes} \quad Courant effectif de mesure. Devrait être compris entre \pm 2 . 10^{-3} du courant théorique pour que la non linéarité de la courbe de magnétisation soit négligeable.$
- JUndt Intégration de la tension induite pendant la variation de courant $(|\varepsilon_a| \le 5 . 10^{-3}).$

2.2.2 Mesure du gradient intégré

Le principe de mesure du gradient intégré est le même que pour le gradient au centre, mais c'est dans ce cas la bobine à gradient longue GLC1/L qui fut utilisée, tel que :

$$\int G_{(x,y,z)} = \frac{I_{th}}{4V_s} \cdot \sum_{n=1}^{n=4} \left| \int U_n dt / I_{mes} \right| \quad [T]$$

Avec :

Ith Courant théorique auquel on veut normaliser la mesure.

- Vs Coefficient de calibration de la bobine GLC1/L. (Vs = 0,23474 . 10^{-1} m² et $|\varepsilon_{vs}| \le 1.5$. 10^{-3}).
- $I_{mes} \qquad Courant effectif de mesure. Devrait être compris entre \pm 2 . 10^{-3} du courant théorique pour que la non linéarité de la courbe de magnétisation soit négligeable.$
- JUndt Intégration de la tension induite pendant la variation de courant $(|\epsilon_a| \le 3 . 10^{-3}).$

<u>Remarque</u> : les valeurs V et Vs sont corrigées en prenant en compte l'impédance d'entrée de l'intégrateur et l'impédance des bobines de mesure.

2.2.3 Longueur équivalente

La longueur équivalente est déterminée en divisant la valeur du gradient intégré par la valeur de ce même gradient au centre de la bobine, soit :

$$L_{\acute{eq.}} = \frac{\int Gdl}{Go} \quad [m]$$

2.3 Alimentation et courant

Le quadripôle était alimenté par une alimentation de type R21 autorisant des courants allant de 0 à 1000 ampères. La mesure de ce courant s'effectuait au moyen d'un DCCT externe 1000 A (100 A/V), dont le signal était lu par un voltmètre HP 3456.

La précision de mesure obtenue est de:

- Incertitude sur la valeur absolue pour I \ge 100 A:	$\left \epsilon_a \right \le 5 \cdot 10^{-4}$
- Erreur relative aléatoire pour I \ge 100 A:	$\left \epsilon_{r}\right \leq 5 \cdot 10^{-4}$

2.4 Précision des mesures

• Gradient au centre :

- Incertitude sur la valeur absolue pour I \ge 100 A :	$\left \epsilon_a \right \leq 5 . 10^{ \text{-}3}$
- Erreur relative aléatoire pour $I \ge 100 \text{ A}$:	$ \varepsilon_{\rm r} \le 5 . 10^{-4}$

• Gradient intégré :

- Incertitude sur la valeur pour I \ge 100 A :	$ \varepsilon_a $	\leq	3.	10 -	-3
- Incertitude sur la valeur pour I \ge 100 A :	ε _a	\leq	3.	10	-3

- Erreur relative aléatoire pour I \geq 100 A : $\left| \begin{array}{c} \epsilon_r \end{array} \right| \, \leq \, 5 \, . \, 10^{-4}$
- Longueur équivalente :

- Incertitude sur la valeur absolue :	$ \varepsilon_a \le 6 \cdot 10^{-3}$

3. MESURES MAGNÉTIQUES

L'aimant a été mesuré pour des courants de 400 et 800 A pour le gradient intégré et le gradient au centre, et jusqu'à 900 A par pas de 100 A pour les courbes de magnétisation.

Les dimensions de notre bobine de mesure nous autorisaient des déplacements maximum de \pm 35 mm sur Y et X à partir du centre de l'ouverture de l'aimant.

Pendant les mesures, l'aimant était refroidi avec un débit d'eau de 55 l/min.

3.1 Homogénéité du gradient au centre sur X à I = 400 et 800 A

L'homogénéité sur X = \pm 30 mm est comprise entre \pm 7.10⁻⁴ à 400 A et \pm 4.10⁻⁴ à 800 A.

3.2 Homogénéité du gradient au centre sur Y à I = 400 et 800 A

L'homogénéité sur Y = \pm 30 mm est comprise entre \pm 3.10⁻⁴ à 400 A et \pm 9.10⁻⁴ à 800 A.

L'homogénéité sur X = \pm 30 mm est comprise entre \pm 3.10⁻⁴ à 400 A et \pm 2.10⁻⁴ à 800 A.

L'homogénéité sur Y = \pm 30 mm est comprise entre \pm 7.10⁻⁴ à 400 A et \pm 9.10⁻⁴ à 800 A.

3.5 Courbes de magnétisation

Les courbes montrent que cet aimant commence à saturer vers 550A. A 800A la saturation fait chuter le gradient intégré de 24 % par rapport à la droite théorique.

	-		
I [A]	Go [T/m]	JGdl [T]	Leq. [m]
0	0.030	0.043	/
100	4.109	5.058	1.231
200	8.181	10.075	1.232
300	12.267	15.045	1.226
400	16.340	20.044	1.227
500	20.217	24.601	1.217
600	23.304	28.170	1.209
700	25.680	30.8579	1.202
800	27.148	32.4817	1.196
900	28.080	33.5817	1.196

Tableau de valeurs et longueurs equivalente

3.6 Tableau récapitulatif

	Aimant Type Q120
Résistance [mΩ]	136
Inductance à 120 Hz [mH]	60
Go [T/m] à 800 A	27.148
∫Gdl [T] à 800 A	32.482
Longueur équivalente à 800 A [m]	1.20
Longueur de culasse de l'aimant [m]	1.20

4. CONCLUSION

L'aimant est conforme aux qualités de champ attendues, voire légèrement supérieur. Sans doute grâce à la meilleure qualité d'acier de la culasse (en tôles feuilletées et non massif), le gradient est supérieur de 4% aux valeurs des anciens aimants (Réf. [1]).

Les mesures montrent qu'il est fortement saturé au courant nominal de fonctionnement (24% à 800 A).

Il produit un champ moins homogène sur l'axe Y comparé à l'axe X, et ceci bien que pôles et bobines soient symétriques, mais le profil de culasse est plus étroit selon X que selon Y. Un examen visuel de l'aimant n'a pas permis de déceler de problème de fabrication pouvant amener à ce résultat. L'homogénéité sur Y étant dans les spécifications, l'aimant a pu être validé comme étant conforme à l'usage prévu.

REFERENCES:

- [1] Note technique MPS/SI Note MAE 70-16
- [2] Technical spécification for Q120N quadrupole magnets AT-MEL-MI/2003/BL/mco, EDMS document N° 413994/1