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GENERALITIES
1.1 Introduction

BEAMSCOPE!) is an acronym describing the action of the device on the beam; it
stands for "BEtatron AMplitude Scraping by Closed-Orbit PErturbation". The acronym
itself illustrates rather well the aim'of this instrument: to provide a quick dis-
play of the (almost) complete transverse status of a beam in a circular accelerator,
The transverse status of a beam is (in principle) defined by its density distribu-
tion in the four-dimensional betatron phase space. Assuming rotational symmetry
in horizontal and vertical two-dimensional subspaces (i.e. smear-out of all initial
inhomogeneities), the complete description reduces to a two-dimensional distribu-

tion on the plane of the two transverse betatron amplitudes.

In most practical cases there is amply sufficient information in the two pro-
jections, the horizontal and the vertical betatron amplitude distribution, respecti=
vely. From either of these two distributions, the corresponding transverse emit-
tance —- regardless of its definition —— can be quickly calculated and displayed,

In the configuration as realized in the PSB, Beamscope provides an amplitude dis-
tribution plus the 957 emittance values (the common definition in the PS complex)
in a few seconds. The complete two-dimensional distribution can be obtained by
simultaneous use of Beamscope in one plane and the measurement targets in the com=
plementary plane (see Section 8). At present, this measurement requires several

minutes, since the target has to be advanced manually.

The principle of operation is illustrated in Fig. 1. Three dipoles (the number
required to produce a local closed-orbit bump), excited synchronously with a half-
sine-like current produced by three pulsed power supplies, move the closed orbit
away from its unperturbed location towards an appropriately placed precision scraper,
where the beam is eventually lost, the largest betatron amplitudes first. This
loss takes place gradually, typically within about 1 ms. During this interval, five
signals are being recorded by five fast sampling ADCs: the shunt voltages of the
three dipoles, the beam current (as provided by the slow beamcurrent transformer),
and its electronically produced derivative. These "raw" signals are immediately
transmitted via Serial CAMAC to a NORD 10 computer —- at present the Temporary Beam
Measurement Computer (T-BMC), in the future the PSB FEC within the new PS control
system. Since the ADCs have 1K words of 10-bit resolution, the raw signals assume
values between 1 and 1024. Figure 2 depicts the typical pattern of these five sig-

nals.

All the information necessary to compute the amplitude of the closed-orbit bump
(at the azimuth of the precision scraper) from the three dipole shunt signals, is

stored in the computer. This synthetic signal, the "computed bump amplitude",
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together with the two remaining raw signals I and dI /dt normalized to 1,
beam beam

constitute the three basic Beamscope signals. Figure 3 shows them, and also shows

how the 957 beam radius can be derived directly from these signals (for more details

and information about how the calibrated amplitude profiles are computed, see

Section 2).

Obviously, the measurement as sketched here is fully destructive. On the other
hand, and contrary to the non-destructive beam profile detectors, it gives directly
the betatron amplitude distribution, which is easy to interpret and shows many more
details than the projected density (see Fig. 5). In order to obtain the amplitude
distribution from a profile detector, one has to use the Abel-transformz), even in
order to compute only the simple 957 emittances. This adds further loss of resolu—

tion to the sometimes intrinmsically poor resolution of the profile detector.

Furthermore, the unwanted beam destruction can be 907 avoided if only emittance

is to be measured (see Section 2).
1.2 History

As the basic principle of Beamscope is rather simple -- just produce a control-
led closed-orbit bump and observe ensuing beam loss —— it has certainly been used
in one or the other accelerator for coarse measurement of transverse beam dimen—
sions. The only publication I know about deals with application of the method in

context with the LBL Electron Ring Acceleratora).

Independently, Beamscope was proposed for the PS Booster by Peter W. Krempl.
He demonstrated its feasibility for the pSB™) (which, depending on machine lattice
and geometry, is not guaranteed a priori), proposed the two measurement methods
described in subsections 2.1.1 and 2.1.2, and already pointed out most of the pos-—
sible sources of measurement errors. He proposed a computer-—assisted (IBM 1800)
facility, which at the time was not adopted for budgetary reasons —- this in spite
of a keen show of interest, on the part of the machine experimenters, in replacing
the IBS (Ionization Beam Scanner); this had been shown to be inadequate for emit-
tance measurement of (highly) bunched beams®) and had consequently been put out of
operation. P, Krempl left CERN and F. Sacherer pursued the realization of the idea
in a different way: deliberately renouncing computer assistance, he conceived a
system that was only capable of giving the (957) beam diameter by the double-pulse
method (see subsection 2.1.2), the so-called "Beam Width Meter" (BWM). The bump
amplitude was determined by a position monitor situated immediately upstream of the
precision scraper. This system was actually built, and worked in principle, but
the measured beam diameters differed substantially and unsystematically from the
ones measured with targets. This failure was never fully explained but in the
light of later experimentss) it became probable that the accuracy of a pick-up
electrode plus its complex electronics is not sufficient (in particular in the

presence of beam loss) for this kind of application.
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With the hardware of the BWM and using the DPO (Tektronix WP1000 Digital
Processing Oscilloscope) to compute the bump amplitude from the shunt signals of
the three dipoles, I was able to measure transverse beam dimensions in fair agree-—
ment with target values. Moreover, the errors behaved rather systematically and
led to the idea that the measurement targets might have aged and that their results

were erroneocus. This conjecture has been confirmed in the meanwhile.

These experiments pointed out how to proceed further: back to the computed
(from dipole currents) bump amplitude. Succeeding F. Sacherer in charge of the
implementation of Beamscope, I had extensive computer studies done7) to check the
feasibility of the method with existing hardware, mainly with respect to parasitic
scraping, the most insidious error source. It turned out that the configuration
chosen from the very beginning was also the best, making Beamscope feasible for
all working points, but nevertheless reducing the vertical acceptance of the PSB
to about 90T mm-mrad. Precise measurements of all of the 24 ring dipolese) invol-
ved were done?) in order to verify whether their field quality was appropriate for
this application. Since the field quality of the dipoles was found to be surpris-
ingly good, it was only necessary to invest in interfacing the hardware to the
Beam Measurement Computer, then a PDP 11/45. On the initiative of Metzgerlo) and
with the help of Baribaud and his teamll), a serial CAMAC loop was installed,
together with the hardware described in subsection 5.4. This configuration was
retained and is still operating successfully with the T-BMC. The bumper supplies
had to be improved and modified to satisfy operation performance standards. Soft-
ware turned out to be more complex than was foreseen and required considerable de-
velopment. Even now, with the feedback from operational experience, software still

continues to evolve slowly.
PRINCIPLE

2.1 Emittance measurement

Emittance measurement basically means measurement of the beam dimensions, which
have to be defined in one way or the other. The definition of emittance E adopted
for the CPS complex is the area of that ellipse in betatron phase space that com-
prises 95% of all particles. For a given azimuth, there is a corresponding beam

L
radius given by the well-known expression x(95%) .= I:(E/TT)BCS]2 ; B the Courant-

cs’?
Snyder beta function for the azimuth considered, is known from lattice calculations.
Although perhaps not the most significant definition [it completely ignores the
particle distribution for amplitudes < x(95%)], it is well adapted to target mea-

surements and acceptance considerations and has proved to be useful in practice.

There are basically two methods for determining x(95%) [E x(95)] with

Beamscope; both were indicated by Krempl.
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2.1.1 The single-pulse method [in earlier references,
also called the Closed-Orbit Reconstruction
(COR) method]

Its principle is well illustrated in Fig. 3, showing the three basic Beamscope
signals. Recording the instant of 957 crossing of the beam current I, one immedia—
tely finds the corresponding bump amplitude y(95). The same can in principle be
done with the end of the losses which obviously mark the "loss" of the particles
of zero amplitude and hence designate the beam centre. Looking at the raw profile
dI/dt, ome notes, however, that the "end" of the loss is smeared a bit by the in-
fluence of the momentum spread. (This effect and the '"tangent fit" described
below are discussed in subsection 3.2). In order to define the beam centre
properly, a tangent is put on the slope of dI/dt, and its intersection with the
abscissa yields the beam centre or, in other words, the closed orbit. Looking up
the corresponding bump amplitude y,, the wanted beam radius x(95) is obviously

given by
x(95) =y, - y(95) .

With the known diameter 2a of the precision collimator, one finds the (otherwise

unknown) amplitude X0 of the unperturbed closed orbit:

xCO = i(yO e a) .

The sign depends on the "polarity" (e.g. "in" or "out") of the bump.

Physically, this procedure means that one assumes constant phase-space
density in the vicinity of the origin: in this case the amplitude distribution is
) * } SE
proportional to the area element ) dA = 217 r dr. This concept would fail in case

of a genuine hollow beam (which we were not yet able to produce ...).

Performing two measurements with different dipole polarities, the sum of the

two yo's should be equal to the width of the aperture:
Yo,1 * Yo,2 = 2a .
This provides a simple check of the validity of the measurement and can be used

to verify calibrations, energy, and Q-values.

The single-pulse method being fully destructive, there may be a reaction of
the beam control system perturbed by particles lost on pick-ups or simply by too
low an intensity at the end of the scraping. This reaction may interfere with a

(horizontal) measurement.

The total loss of the beam may limit the application of the method to routine

monitoring of beam properties in normal operation.

*) r is the radius of polar representation in x, BCSx’.



2.1.2 The double~-pulse method [formerly referred to as the
Beam Width Meter (BWM) Method]

This method largely avoids the drawbacks of the preceding method: if only the
95% dimensions of the beam are to be found, one can stop the bumper supplies, once
5% of the beam are lost, by a "stop pulse" generated by a kind of comparator. The
stop pulse causes the remaining energy stored in the capacitor banks of the bumper
supplies to be dumped into a crowbar. This technique allows for emittance measure-
ments with little more than 57 loss (the bumper supplies stopped, the closed—orbit
bump amplitude continues to increase until eddy currents in the vacuum chamber have
decayed). Figure 4 shows the principle of this method, which is even simpler than

the single-pulse one: if the amplitude X of the unperturbed closed orbit was knownm,

x(95) would be simply

x1(95) = a - y1(95) - X, s

index 1 standing for polarity 1. For the other polarity (inverted bump amplitude)

the analogous equation is

%2(95) = a - y,(95) - X,

Adding both equations yields the very simple expression:

1
%, (95) ; %2(95) _ - 5(¥1(95) + y2(95)]

x(95) =

which can also be read directly from Fig. 4.

One measurement necessitates two pulses and gives the beam dimensions averaged
over the two shots (note that a series of n measurements only requires n+l shots).

It is this method that is used for operational emittance measurement.

2.2 Display of betatron amplitude distributions

From the raw signals of Fig. 3 it is straightforward to compute a calibrated
curve representing the distribution of betatron amplitudes dN/dx = n(x) (/ n(x) dx =
= N) or derived quantities as emittance variables. The computed bump amplitude

y(t) and the raw profile

form a parameter representation of (dN/dt) (x). [01 = (2mR/ec) = 4.51 x 10!2 A_l.]

2.2.1 Amplitude profiles

(The term "profile" is used for brevity, and should not be confused with the

projected density as seen by a wire scanner or an IBS).



One obtains

N _dv 1
dx = dt dx/dt

by eliminating t

x(t) =y - y(v) aN(x) -
ANy Cy dL .y de  Met®
dt B dt
dN(x) _ G B ne(x) _ ne(x) _cp dI(e)/dt |
ax "W T E&7ae T T dy/de B dy(oy/dc

dy(t)/dt is obtained by numerical differentiation from y(t); yo is the bump ampli-

tude belonging to the reconstructed beam centre.

The practical computation of -dI/dt makes use of four calibration factors for
the electronics involved (see subsection 5.4): Beam transformer, ADC, level adaptor,

analog differentiator, multiplexer.

Apart from the physical amplitude profile, in some cases a normalized amplitude
profile is of interest: in order to study beam blow-up phenomena on a rising machine
cycle, a series of profiles (with incrementing measurement time) in the variable
Xy = (BY/BIYI)%X, (B1Y1) referring to the first profile's beam momentum, is better

suited: all profiles should coincide if there is no blow-up.

The actual processing software caters for both kinds of amplitude profile, de-
pending on the timing base chosen: physical amplitudes for the D-train (a 10 kHz

clock) and normalized amplitudes for the B-train (bending field in gauss).

Figure 5 shows an example of the use of normalized amplitude profiles, taken
from Ref. 12,

2.2.2 Emittance profiles

Sometimes profiles in physical (¢ = xz/BCS) or normalized (e = €BY) emittance

are preferable., They are easily obtained from the amplitude profile n(x)

n (&) = n3E = n5E

and
n_(€) =n_(e)/(By) .
Both displays are provided by the software package.

For operation purposes a "hybrid" display is available: n(x) with an abscissa
in physical emittance, i.e. n[x(e)] = 1n(e). Of course S/ 1n(e) de is not correctly

normalized:
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~ 2N
de = =2 ,
fn(e) £ fes (x) ¥ N

but the display is sensitive to variations of the large amplitude tail of the ampli-

tude profile.

2.3 Computation of the bump amplitude

The determination of the computed bump amplitude, one of the three basic
Beamscope signals, splits into a linear or lattice part, where the amplitude is
calculated from the deflection angles, and a basically non-linear part, namely the
calculation of the deflecting angles from shunt voltages. Both steps are straight-

forward.

The amplitude of the closed-orbit perturbation due to one dipole is given
py!®)

ds
2 sin TQ (s) - QWJ for sy < s < sy+2TR ,

5
v(s) = 2 /B;B(8) cos [/ 3
S

where Bg is the B function at dipole position and © is the deflection angle.

In order to create a local closed-orbit bump, three dipoles are needed, whose

deflections have to obey the conditions (see Fig. 6 for nomenclature)

koo - ko _
.. EE . EE 3 fiff?i__:ﬂgi k: Ei i} f& K an(wc wu) ‘
8, B.) sinCyy -9’ 6, By sin(yy - ?y)c

The indices u, ¢, d denote upstream, centre, and downstream dipole location, res-—
pectively. If (as was done in the PSB) one places the dipoles on equivalent posi-

tions in standard lattice cells, the constraints become simply

g
r = 52 = -2 cos 1 [= -2 cos %Q for the PSB] ¥
u
%:1
8
u

where |; is the betatron phase advance per standard machine period: y; = 2mQ/16
for the PSB.

The expression for the bump amplitude of three correctly excited dipoles as-

sumes a simple form:

sin @ 0<d<y
y(xr) = 6, VB B(s) sin (211 - ®)  wp £ & < 2y
0 otherwise
L]
amoEp ds
@=p-y = 5
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The ideal constraints being only approximately met, the computed bump ampli-

tude has to be summed over the three individual amplitudes (for p; = Qm/8):
= +
Y=Y,V Yy

y. = GUY1 cos (& - Qm) )%

A
|

'® + ZQE] _ (Bapertureedipole
8 1 2 sin Qm

- 3qm
V4 = Gdyl cos [@ + % ]

= ecyl cos

Lattice functions B and ® are computed by interpolation between stored values for
round Q-values, which in turn were computed off-line by a program derived from
Saviolakis' computer feasibility studies”). Hence the validity of the approxima-
tion is limited to working points QH,QV not too far from the standard quadrant

b Qy <45, 5<Q < 5.5,

An improved version now being implemented computes the lattice functions by
the matrix method [based on BOOMI“), the PSB specific lattice program].

It remains to calculate the deflection angle 6 from the current acquired via

the shunt voltage. Sincel?)

g - S B d2

3.1297 By °’
we need to know the magnetization curve of the dipoles. Since the 24 individual
dipoles (3 stacks) are not fully identical and there is an influence of the posi-
tion within the stack due to the support, they had all to be measured in the lab,
but in their real position within the spare triplet of the PSB, to correctly include
fringe-field effects on the integral /S B d%. This quantity was measured®) for each
dipole in pulsed mode for 12 different currents from O through 110 A, the limit
of the power supply. For processing purposes the curves S B df versus I are ap-
proximated by a fourth-order polynomial whose coefficients were found with a least-
squares fit (program LSQFIT from the CERN Computer Centre Program Library). The
error of the approximation is in general less than 5 X 1073 (the measurement itself
suffers from at least 3 x 1072 possible error). All the 120 coefficients are stored

in the computer software.

The integrated field computed this way is the one without vacuum chamber; it
has to be corrected for the distortion due to eddy currents in the ‘metallic pipe.
For slow variation of the field B and a circular vacuum chamber, the corrections

15)

can be found analytically

Beady = 8 Teday

_ MoRd 1 (m]z]
Teady = "2p [1 * 3l
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§)

_9_
where R, d, p are the radius, wall thickness, and resistivity of vacuum chamber,
respectively; 2h is the pole gap width.

With the particular values [there are two types of vacuum chamberls)], one

obtains (2h = 175 mm):

Dipole | Diameter Wall Material | Resistivity Tedd
location | (ext.) thickness y
2R d p

(tom) () (Qem) (us)
Stl.steel
7L4 140 1.5 AISI 3162 | 74 x 1078 | 133.6
+0.2 N
8L4 132 1.5 Inox 304L 70 x 1078 128.0
9L4

Teddy was measured®) to be 120 * 20 us for-the 132 mm chamber.

The effective field inside the chamber Beff(t) can be written

B(t_T )’

Beff(t) =B(t) - B eddy

Teddy -

and it is the last form that is used to compute the effective / B d%: the whole

computed bump is numerically shifted backwards in time by Teddy'

(3. INTRINSIC RESOLUTION LIMITS

3.1 Influence of scraping speed

Measurements of transverse beam dimensions by scraping off the circulating beam
suffer from intrinsic resolution limits related to the speed of the intercepting

device.

In order to quantify this relation, we study a model where a target intercepts

a beam in a waist, advancing with constant speed d/Trev towards the beam centre.

A quick glance at Fig. 7 already shows that the interception of all particles
having betatron aé:litudes y between r and r+dr requires a certain number of re-
volutions, and that this number depends on the fractional part of the Qy value:
for the (rather special) value q = Y3, already the fourth cut overlaps the first
one and this overlapping goes on for all subsequent cuts. Obviously the whole
circumference is scraped off, after n turns, when 2¢ = 2m1/3 and cos ¢ =
max Npax Nmax

= l = — = .
% 1 (nmaxd/r)’ nmaxd X o r/2,

The case for particles sitting exactly on this fractional q value (corres-
ponding to a third-order stopband) is the most unfavourable one that may occur.

In practice it is always masked by the unavoidable Q-spread.
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The influence of the resonances is clearly visible on Fig. 8, where Xmax/r
versus q is depicted for several scraping speeds d/r. The "base line" of this

diagram, i.e. the off-resonance resolution, is given by

= —j

r 2

2
*max _ l{Bﬂd] /s
r ]

which is valid for distances from the resonance M/N:

-3 (2

r
A handy table of this formula was given in Ref. 1.

Results of analytic calculation and computer simulation of the resolution
function and its dependence upon the vicinity of a resonance are given in the Ap-
pendix. The resolution function itself (see Appendix for definitions) is shown

on Figs. 9 and 10.

3.2 Influence of momentum spread

The dispersion of the orbital momentum of the circulating protons, in the PS
Booster of the order of i39%0(trapping) - il.59@o(transfer), influences the Beam-

scope measurement in two ways:

i) It introduces a spread in bump amplitudes of the order of magnitude given above,
simply via the magnetic rig}dity. This causes a loss of resolution of compar-
able order, which can certéinly be neglected with respect to the effect of the
scraping speed and with other error sources (see Section 4).

ii) Radial beam dimensions are the sum of both betatron and momentum amplitudes
(in the PSB the momentum compaction function is a smooth function around a mean
value of 1.4 m that never vanishes). On the other hand, it is common practice
in the PS complex to quote the over-all beam dimensions or emittances, as they
are measured straight with targets without any attempt to disentangle the com-
ponents. The latter is possible in principle with a series of measurements
combining targets and Beamscope, say, as described in Ref. 3. In general,
however, the total dimension is more useful anyway, since it is related to

both the space-charge detuning and the acceptance of a machine.

All measurements and comparisons with targets (see Section 7) were made in
this way. This is possible because the horizontal beta function and the momentum
dispersion are about proportional to each other in a standard lattice, and there-
fore the amplitude ratio of the two components is nearly constant throughout the

machine period.

A comment is to be made on the validity of the tangent fit described in sub-

section 2.1.1. If the distributions of momentum and of betatron amplitudes are
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independent (a reasonable, but not experimentally proven assumption), one can write

for the total amplitude x,
X=a+p
where

a is the betatron amplitude

p = x, (Ap/po).

Suppose a linear betatron amplitude distribution (= const. phase-space density, as
assumed in the vicinity of the origin) f(a) = Ca, and a finite momentum distribu-—
tion g(p) with jiig(p) dp = 1, the distribution of the total amplitude h(x) is given
by
Min(P,amax)
heo = f d g()C(x - p) .

Max(—P,x—amax)

Then h(x) = Cx, if a) x < amax~P and P < ap .. ; b) g(p) is an even function.

Condition (a) means that for a successful fitting of a tangent to the raw
profile's slope, the slope should show a linear course around the fitting point.
This condition met, the target should intersect the abscissa right at zero betatron
amplitude, if (b) the momentum distribution is symmetric, which is obviously the

case for a bunched beam.

Radial measurements of coasting beams with asymmetric momentum distribution
result in two different amplitude profiles depending on the polarity of the bump,
thus indicating that the interpretation is no longer meaningful. Nevertheless,
since the situation at the targets is the same, comparisons with targets still make
sense.

3.3 Resolution limits due to finite bandwidth
of the signal-processing chain

Disregarding for the discussion the other resolution limits, the beam-derived
signals of an ideally hollow beam (represented in normalized phase space by an in-
finitely thin ring) would be a (downwards) step function for the beam current and
a Dirac 6-function-type signal for its derivative. Processing these signals with-
out distortion would require infinite bandwidth. The bandwidth limitation of the
real electronics in turn can be expressed as a loss in resolution of the (otherwise
ideal) measuring system. In order to quantify the finite resolution, we assume
that the limiting element is the beam transformer and that it rolls off with

6 dB/octave (one pole). This corresponds to a transfer function:

1/t .
H(p) = P+ i/tc P=lws
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T = 1/2m f34p being the time constant related to the roll-off frequency fa4p
Since the § pulse response in the time domain is given by the inverse Laplace

transform of the transfer function, we obtain

h(t) =2 H@p)] = 2 e7t/T

Thus the § pulse is deformed into a finite-height, exponentially decaying pulse
with time constant T. The Slow Beam Transformer of the PSB, whose signals are used
for Beamscope measurements, is designed to roll off at 10 kHz, or T = 1.6 x 107°% 5 =
= 1.6 x 1072 ms.

To get a spatial measure for the width of the resolution function, we have to
take the quantity T&, with § being the scraping speed or speed of the bump ampli-
tude. The latter assumes values between 5 mm/ms (measurements at 800 MeV) and
30 mm/ms (50 MeV), resulting in resolution widths of 0.08-0.4 mm. This is inferior

to the intrinsic resolution limits as given in subsection 3.1 in most cases.

Although it is possible in principle to extend the bandwidth of the system,
attempts to use the "Intermediate Beam Transformer" extending intrinsically to
3 MHz have not given satisfactory results: the markedly increased noise level
demands drastic (digital) filtering during software processing, giving away what

might have been gained at the source.

ERROR SOURCES, AS CONCEIVABLE, AND THEIR EFFECT

In this section a number of error sources that are conceivable are checked
against their influence on the accuracy of the measurement. As a general rule,
it has been assumed that individual errors of any kind and in any process should

not exceed 5 x 1073,

4.1 Parasitic shaving

The very dangerous effect so termed means that the beam is actually lost on .,
an obstacle other than the precision collimator made for this purpose. Of course
it is easy to make this collimator so narrow that there is ample margin for all
working points and beam sizes, but the ensuing loss of acceptance would severely
limit machine performance. Since a multitude of parameters intervenes (beam
dimensions, working point, closed-orbit amplitude, ratio of dipole strength), the
trade-off is rather delicate and not straightforwardly found. Any error committed
becomes fatal in the sense that there may be no way to detect it, since the mea-

surement works apparently normally and just the results are wrong.

The feasibility of some possible dipole configuration has been studied by
Krempl in an unpublished work. It has been verified for the dipole positions
chosen in straight sections 7L4, 8L4, 9L4, in an extensive computer study by

Saviolakis7), covering all working regions that could be envisaged and including the
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closed orbit as measured at that time. For the aperture, located in the flange
between pick-up 8RU and quadrupole 8QDU, 70 x 80 mm?, or 265 X 100 (m mmemrad) 2

in acceptance terms, was considered to be a good compromise, leaving a safety
margin of 4-5 mm in the (critical) vertical plane with respect to the nearest
obstacles (the scrapers in bending magnets 8RBl and 8RB2). However, by the end

of 1979, it became evident that this aperture is now a limit to a further increase
of intensity, and a modification of the present configuration is to be considered

in the near future.

4.2 Uncertainty in Q values

It has been found experimentally that using the measured Q values in the
computation of bump amplitude gives the best fitting emittance measurements. This
corresponds to what one expects, since in both the Q and the Beamscope measurement
the trajectory is deformed and the coherent Laslett Q shift should determine the
effective Q's. However, the Q measurement is suffering from some jitter, and
averaging should be employed to obtain precise Q values. This may take longer
than the actual Beamscope measurement and is thus normally omitted for convenience.
In practice one works with reference data stored on a disk, which correspond
roughly to the intensity of the chosen type of beam. We want to estimate to which
order of magnitude this uncertainty (or any other error) in Q values is tolerable.

From subsection 2.3 we recall the expression for the (ideal) bump amplitude
y B = GuVBdBap sin @

a

differentiating with respect to Q, we obtain

-

!
3L=lf22+8
yoQ 28

|

+ ¢! ctg ¢ ,

™
[N

where the prime denotes 3/3Q.

Inserting figures for the present working region, Q = (4.25, 5.35), we

H,V
obtain
oy dy
L WH = -0.11 , - ”aQ_H - -0.128 ,
YH g n Ny
dy. Jy
L -B-Q—V - 0.075 , + WV = -0.005 .
Yy Ry vy Ry

Thus typically the quantity (1/y) (dy/dQ) = 0.1. To respect the chosen limit of
5 x 107% for individual errors, an error in the Q determination of 8Q = 0.05 ap-
pears tolerable. This applies to the single-pulsing method (see subsection 2.1.1).

The double-pulsing method (subsection 2.1.2) is more sensitive when the beam
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dimension is small with respect to the bump amplitude, so that at ejection energy
or for pencil beams a §Q = 0.01 should be respected. On the other hand, for large
beams, as typical for injection measurements, the accuracy of the Q values is not

critical at all.

4.3 Magnet inhomogeneity

Since the dipole stacks used by Beamscope to create the closed-orbit bumps
are taken from the dipoles originally built and installed for the correction of
closed-orbit errors, there was some concern about the quality of their field, in
particular for the large off-axis positions reached by the beam during a measure-
ment. For this reason, when the S B df curves were measured, the field quality
over their aperture was checked too®) . Fortunately it turned out that the dipoles:
do better than expected and the field errors do not exceed 5 x 10”3 and are below
that in most cases. So they are not further discussed here, and for more details

Ref. 8 should be consulted.

4.4 Finite length of the magnets

In all calculations of bump amplitudes the dipoles are tacitly assumed to be
point-like in the azimuth. In order to determine the effect of finite dipole
length £, we restrict ourselves to the case of three dipoles in equivalent lattice
positions in consecutive machine periods, using the notation and formulae of sub-

section 2.3. The integration over the distributed deflection 6(g),

5

y(0) = 8(o)BB sin [ £,

B
Sot0
yields approximately for the bump amplitude
/2 /2
y = J/ y(0) do = /B4R sin & Jf do 68(0) {1 + [%ig - ctg @]O

-%/2 -2/2

The term proportional to ¢ vanishes for even 8(¢), and we obtain

1
S [I_LLMQ(02>:|,
2R%

where yo = 6vBoB sin ¢ is the ideal amplitude for point-like dipoles and (o?)

denotes the second moment of the magnetic field distribution,
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/2
g% = (lji_p) B(o)o? do .
-%/2

From measurement of B(g), /(oz) has been evaluated to be 13.5 cm 17). With this

value the correction term in the square bracket becomes

2 x 10°°% (hor.)
-1.5 x 107* (vert.)

and is thus completely insignificant.

4.5 Effect of non-linearities (zero-harmonic octupoles)

We consider only the first-order effect of the "dipole" conmstituted by the one
octupole which is situated closely to the maximum of the bump such that the beam
passes at a large distance from the chamber axis. All the other effects of second
order as Q shift and lattice function distortion are neglected. With the general
expression for the octupole field,

"
Bx = 3—-(3x2y - Ys)

ni

By %—-'(x3 - 3xy?) ,

we obtain the deflection due to that octupole

o = _JLB"de 3
oct 6 X 3.1297RBy Yoct

(x=0) .

Expressed by the bump amplitude at the aperture y,

Lo
_ [Bocth S rot
Yoct =¥ B sin ¢

and the relative error in bump amplitude becomes
2 & - . 3
Ay _ S B"d8  , Boct cos (¢ cI>oct Qm)sin rot
y 37.568y° B sin mQ sin® & '
~
12(Bp)

Since the octupoles are not powered at injection, their effect intervenes mainly
at measurements at 800 MeV, when the octupoles are excited to their maximum strength
S B"d2 = 80.4 T/m®. 1In this case, one obtains with the PSB parameters on the

normal working point:



Plane Error in bump amplitude

Relative (%) | Absolute (mm)

Horizontal 1.4 0.49
Vertical 1.8 0.72

For the time being this error is accepted and no correction is attempted. For com—
parison measurements with targets, the octupoles are de-energized just prior to
the measurement. With the future transverse feedback system there will be no need

for them anyway and this error source will disappear.

4.6 Position errors -— errors in lattice functions

Since beam dimensions are derived directly from the computed bump amplitude,
it is of some interest to know the sensitivity of the latter to errors in the

parameters used. These errors may be classified as follows:

a) '"Surveyor's error", i.e. errors in the positioning of dipoles and aperture, or
in their assumed positions.

b) Deviation of the real lattice functions from the "ideal" or computed ones. All
computations rely on correct idealization of the real magnets and, even if this
is well done, real lattice functions in the fringe field zone of a magnet may
still deviate from calculations. This is very likely to be the case for the
aperture, which is inserted into the vacuum chamber flange of the defocusing
quadrupole. In addition to this, the lattice functions may be distorted by
errors in the alignment of the focusing elements.

c¢) "Excitation errors" of the dipoles, which may be due to calibration errors in
shunts or electronic processing, or in the underlying measurement of / B df

versus dipole current, or due to field inhomogeneity.

The following formula allows one to determine the individual weights of the

different types of errors. Instead of the ideal bump amplitude,

y(®) = yo sin O

vy = 0 @Bdlpole

where

and

one can write for the perturbed bump amplitude:
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y(®) = yo [1 + é%ﬁj sin (& + A®) ,
with
1
5;_ L E[eu E scec * Sded * ctg TQ ¢u - Cd¢d]

A® = dd + %[ctg o e, * Cee Cqeq ~ ¢u - Sd¢d] .

Subscripts u, c, d refer to the upstream, centre, and downstream dipoles.
Constants are given together with their computed values for QH v = (4.2, 5.3):
b

. 7
- —p 8in s mQ _ - m
Sc r sin 10 ( 0.228, 1.097) r 2 cos 8

.3
_ sin % mQ _ _
qa° ein g ( 0.772, -0.097)

cos 7y ctg mQ = (1.376, 0.726)

CC = T W = ( 0.139, 0.506)

wn
I

ctg & = (0.235, -0.464)
_ cos Yy mQ
d sin mQ

(-1.516, -1.232)
(These expressions are valid only for the PSB lattice with a phase advance of
W1 = TQ/8 per machine period.)

The errors b, 80, e can be split as follows:
u,c,d

88 + g’ . .
2b = in——JiJQE error in B function at the
aperture (intrinsic + due
B (- . . d
to position error §8s)
8s :

dd = &% + Cl error in phase at the
aperture (intrinsic + due
to position error 8s)

dipole .
) 6eu,d GBu, g/dipole
e = + : + ¢
u,d 8 ZBdlpole 2 u,d
dipol .
68 5BC1P° € g/dipole
e = —  + - + ¢ .
c 8 ZBdlpole 2 ¢
e are the total errors due to dipoles: &6 are the total excitation errors,
u,c,d u,c,d
and the two remaining terms the error in B-function, again the intrinsic one and the
e ) = dipole
one due to the position error: Qu,c,d ssu,c,d/B i

In its general form the formula is rather academic, but the influence of the

individual errors can be easily identified.
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HARDWARE

5.1 Dipoles

As already stated in the Introduction, three stacks of standard PSB ring di-
poles, initially foreseen for closed-orbit correction, have been dedicated for
Beamscope. This was possible after extensive measurements in pulsed mode®) revealed
a very satisfactory homogeneity of their field across the useful aperture even in
the regime of beginning saturation. The detailed description of these stacks
termed "Type 1" dipoles, each one containing four (double: hor. and vert.) dipoles,
is given in Ref. 9 and in the Technical Specifications (Ref. 18). Originally speci-
fied for d.c. operation at a nominal current of 10A and maximum ratings of 15 A,
the dipoles are pulsed in operation up to 90 A and have been measured up to 110 A
peak current, with a half-sine pulse of length about 20 ms. The duty cycle is very

low. The minimum repetition interval to be expected is 1.2 s. Their characteristics

are:
L = 74.5 mH S B asL = 7.3 %x 10°% Tem
hor. hor.
= = —3 .
Lvert. 66.3 mH J B dQvert. 7.2 x 10 Tem
R = 1.12 Q for 10 A excitation.

5.2 Power supplies and multiplexer

The three pulsed power supplies are based on thyristor—controlled capacitor
discharge. Derived from power supplies developed for the New Linac, they have been
built at CERN by M. Bourgeois. Matched capacitor banks of 800 UF can be charged up
to 1000 V, allowing for peak currents in the dipoles of > 100 A within 10 ms. The
relay-based switchyard connecting the three power supplies to any set of three di-
poles belonging to one ring and one plane is controlled by a NIM module (iﬁ the
Main Control Room), which also permits the (manual) control of the amplitude of
the discharge bump. The absolute amplitudes of the upstream and the downstream
dipole are equal and thus controlled in parallel, whereas for the central dipole
the relative amplitude with respect to the outside ones is controlled separately
for each plane, corresponding to the different deflection strengths and ratios
r = ec/eu (see subsection 2.3) required. Besides this, the module allows selection
of ring, plane, and polarity of the bump manually or by remote control via the old
CERN-made STAR transmission system. At present a CAMAC/STAR interface allows con-

trol via the Serial CAMAC of the T-BMC, the temporary beam measurement computer.

A feature of the power supplies is that there is the possibility to dump the
capacitor discharge into a crowbar, whenever an external condition, the so-called
stop-pulse, arrives. This stop—pulse is generated by a comparator module (also

in the Main Control Room), detecting the passage of the beam current through 95%
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of its value at the start of the Beamscope measurement. This feature is currently
used in the double-pulsing measurement mode (see section 2.1.2) to stop the rising

bump once the 957 amplitude has been found and avoid total beam loss.

The switchyard and the controller module was built at CERN by C. Carter and
the comparator by L. Magnani. For the transfer of Beamscope to the new control
system of the PSB, the controller will have to be rebuilt; the layout of the future
"standard interface" is described elsewhere!®). A note describing the specific

interface, and covering also the power supplies, is in preparationzo).

5.3 The aperture

The precision aperture, although a comparatively simple and "invariant" part
of the system, nevertheless merits some investigation because of its role as ac-
ceptance limitation and loss absorber at lower energies, and its influence on the
irradiation of the machine. The details of thesé considerations exceed the scope

21)_

of this paper and will be given in a dedicated note Here just a few criteria

for its choice are summarized.

In order to be able to measure beams filling the available acceptance of the
machine (this case occurs with a high-intensity beam at injection energy), the
Beamscope aperture must be the acceptance limitation. This means that all particles
lost during capture and acceleration hit this collimator, which determines where
they are ultimately lost. To preserve the resolution of the measurement, one is
interested in losing the intercepted particles as rapidly as possible, in order not
to further reduce the intrinsically limited resolution (see section 3). This ex-
cludes the otherwise preferable solution of a diffuser foil with a massive dump
suitably downstream. As a compromise, a thickness was chosen such that most of the
protons up to 70 MeV are stopped. Beyond that energy, multiple scattering within
the collimator causes sufficient emittance increase that the particle is lost within
a few turns even at top energy (800 MeV). A thickness of 15 mm of copper does this
job, the copper also assuring good thermal conductivity as required to avoid inad-
missible temperatures at the intercepting edge of the collimator. Copper is not
the best choice for low induced radioactivity; this appears, however, tolerable
when easy mechanical exchange is foreseen. Graphite, a barely activated material,
would on the other hand require an intolerably high thickness of the collimator:
although the edge of the aperture is matched to the slope of the beam envelope, the
position and width of the aperture would no longer be precisely definable. The

dimensions of the aperture are given in subsection 4.1.

5.4 CAMAC crate and computer configuration

Beamscope and some other measurement systems became feasible once the PSB
Beam Measurement Computer (T-BMC, the T standing for "temporary'", awaiting something

equivalent in the frame of the new control system) and its CAMAC loops came into
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operation on the initiative of C. Metzger. The T-BMC configuration having been de-
scribed elsewhere, we just reproduce its layout in Fig. 11 (taken from Ref. 22).
Beamscope requiring the graphics facilities, it can be operated from either one of
the Tektronix 4014 terminals in the Main Control Room (MCR) or the Booster Obser-
vation Room (BOR).

One CAMAC crate in the BOR houses all the equipment for acquisition of the five
rav analog signals (Fig. 2) plus the preset counters. Multiplexing and (exclusively
manual) reference setting of the three power supplies is controlled from the MCR
by the "Beamscope Controller", a NIM module with manual or remote control via STAR,
the old PS data transmission system. The module is now linked to the T-BMC via a
CAMAC/STAR interface in crate 60 (Fig. 11).

Figure 12 shows the functional configuration of the CAMAC modules. All five
analog signals may vary in amplitude, and level adaptors, being actually home-made
programmable amplifiers (gain variation by a factor 10 in four steps) are required
to coarsely match the signal level to the input range (0-1 V) of the ADCs. The
latter are of the 10-bit sampling type with max 1 MHz sampling frequency and 1 k
memory (SA/D 1001 from Standard Engineering Corp.). Another home-made module is
the "timing selector", allowing the measurement of a required type of beam in a
ppm (pulse~to-pulse modulation) operated PSB; in fact a gate for the measurement
trigger controlled by the logical product of all external conditions. The physical

layout is depicted in Figs. 12 and 13, taken from Ref. 11.

SOFTWARE

6.1 "Philosophy" and organization

Bearing in mind the complexity of PSB operation and the ensuing variety of beam
properties, it is perhaps not too surprising that the development of the software

package was the most tedious and time-consuming part of the total manpower required.

The PSB consists of a stack of four simultaneously operated accelerators whose
intensity is modulated from pulse to pulse (periodically within one "supercycle").
There is only one set of hardware which is multiplexed (except the dipoles, of
course) to measure the desired ring and plane. To lock the measurement to a certain
type of cycle, the hardware is controlled by "Intensity Program Lines (1 ... 8)",
so-called IPLs (in future "USER" lines). This means that "measurement parameters"

have to be defined by the user.
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Measurement parameters:

Parameter Range Description
IPL 1-8, ALL "Intensity Program": labels a type of

machine cycle with characteristic beam
properties.

Ring 1-4

Plane H, V

Timing 2 trains (B,D). Defines the beginning of the measurement
4 reset pulses. by a pulse of one of the trains and the
Pulse No. reset pulse of the preset counter.

QH’QV Coherent Q values to be found by a Q

measurement at the timing defined above.
B (G) 1256-5920 Magnet bending field proportional to

beam momentum.

Automatically defined by B train; to be
entered manually when on flat top (D
train).

Once the set of measurement parameters has been defined by the user, another
set of parameters has to be found, termed here as "process parameters'". These
parameters can be compared with the settings of an oscilloscope, such as sensitivity,
sweep, and delay, that have to be manipulated in order to get a reasonable trace
on the screen, centred on the event one wants to observe. In our case the screen
is replaced by the memory of the ADCs, the sweep corresponds to the sampling rate,
and the sensitivity may be adapted to the signal by controlling the gain of the

level adapters (see subsection 5.4).

Since there are five signals and the settings may vary with ring, plane,
polarity of the bump, and, of course, beam type (IPL) and energy, a routine mea-
surement could easily degenerate into an experiment. Fortunately, emittance mea-
surements are systematically done at specific timings and energies, roughly cor-
responding to injection and ejection, and also the various beam intensities are
classified by IPL numbers. The way out of the dilemma is thus given by systematic
storage on disk of every process parameter found plus all its subsequent modifica-
tion, for injection and ejection energy. In fact there are two disk files for
these standard measurements plus one more for storage of data relevant for another,

experimental, situation.

The main process parameters are:
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Process Parameters

Parameter Multiplicity| Possible No. Remarks
of values
> w
I
- | o
| W | &
w|g|e]| &
ol I I e
Hl MO
Beam trans-— 9 3 1) intermediate BT
former 2) slow BT
3) normalized BT
Level adapter| 9 2 5 4 4y gains: 1, %, Ys, %o
setting
Acquisition 9| 4| 2| 2 any > 0 delay between start of bumper
delay supplies ("FIRE" pulse) and
start of digitizing (in us)
Sampling 9 2 any > 1 in ps; total sampling time
interval ~ 1000 x gampling int.
On top of these 261 parameters, the measurement parameters —— in particular timing
and beam energy —- and more than a hundred "software parameters" are saved on disk.

The latter comprise calibration factors, as for ADCs, level adapters, beam trans-
formers, coordinates for graphics displays, scale factors, smoothing parameters,

flags for debugging helps, etc. They can be altered on-line by the operator.

This concept has proved to be very useful in operation. It is backed up by a
routine AUTOSCOPE that automatically adjusts the process parameters whenever changed

beam parameters require their modification.

Other parameters stored in the computer code itself are the coefficients of
the power series fits to the magnetization curves of all 24 dipoles involved. The
polynomial approximation of the lattice function is now replaced by the exact cal-

culations using the program BOOM!*) recently implemented on the T-BMC.

Use of rather extensive calculations has only become possible since the pro-
gram package has been split into three real-time (RT) programs: the main RT pro-
gram BSCOP plus the '"conversation" program BSCOl to define measurement parameters;
and now BS5C02, calculating lattice functions with the help of the BOOM Library.
The RT programs communicate via reserved areas in resident COMMON. The fact that,
unsplit, the code exceeds the virtual address space of the 16-bit system is to be
explained by the complexity of the Tetronix PLOT-10 Advanced Graphing System, oc-

cupying almost half of this space.

The program package is written in NORD-10 FORTRAN, except the non-specific

routines used, as the Serial CAMAC driver, written by W. Remmer in NORD-PL.
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6.2 Short description

Here we sketch just the structure, as seen by the user, of the program package.
A detailed description of the individual routines is available for the users2?3).
The program can be entered from any terminal via the START-APPLICATIONS facilityzu),
It automatically responds by presenting the "menu" of all facilities for the
"EJECTION" set of parameters (Fig. 14). Here one can distinguish four groups of

subprograms:

1) Operation programs: They provide a "scan" of the emittances of one or all rings,
optionally complemented by the amplitude profiles of the preselected timing
stored in the file. Figure 15 shows a typical output for four rings. When
run repeatedly, emittance values (last shot and cumulative average) are dis-

played in refresh mode.

ii) Programs for machine experiments: They provide detailed profiles or profile
series of various kinds, normalized or not, as indicated in subsection 2.2.
Illustrative examples are Fig. 5 and Fig. 16, the latter showing a display

option. Program No. 11 engages a conversation to alter measurement parameters.

iii) UtiZlities: Their need has been recognized in the course of the development of
the measurement system. There are routines for manual (21,22) or automatic (28)
setting of the process parameters, for copying settings from one program line
onto another (24) and to swap files (EJECTION, INJECTION or EXPERIMENT) as
explained in subsection 6.1. The "Library Program" is one out of several
maintenance programs selected at compilation stage, the virtual address space

being too restricted to allow for all of them.

iv) Emittance measurement/target comparison: Programs performing emittance mea-
surements that can be monitored in all phases, comparing both methods (subsec-
tion 2.1) with each other and (optionally) with target measurements. The
various errors are computed and displayed. Optionally the data may be written

onto disk for subsequent postprocessing, as described in section 7.

If desirable, one can inspect and interactively modify the tangent fit required
for single pulse emittance measurement. This can be seen on Fig. 17, showing a

display of this program group.

COMPARISON MEASUREMENTS: BEAMSCOPE VERSUS TARGETS

7.1 Method of analysis

Glossary
X true beam radius (95%) at the aperture.
xt true beam radius at the target.

X7 171 x measured by Beamscope with single— (I) or double-pulse (II) method.
b



R A o

(]

_24_
measured by targets and subsequently reduced to
(at the position of the aperture) by multiplication with s = /ER;B%.
theoretical (from lattice computation) value of R-function at i.
half aperture.

true bump amplitudes.

for the two

computed b amplitudes.
5 = ESDSEC polarities 1,2.

bump amplitudes for zero beam radius (reconstructed)

8B GBT
) § = — (mean over the three dipoles), T = —,
287 282

relative errors in the B-functions at aperture, dipoles, and target with

respect to the computed B-values B;.

relative error in / B df measurement and in calibration of electromics,
with respect to computed bump amplitude.

offset type error in target measurement, t reduced to aperture.

error (absolute) in c.o. reconstruction.

In the following calculations, only first orders in errors are kept; higher—

order terms in errors are systematically discarded.

Note that the errors used here are defined in an opposite way to the usual

one: they are defined as the differences of the real values from the computed ones.

We express the measured quantities by the true ones:

Target

Xp =X +¢t

X = /§;7§X X = /§¥7§z (1+t-0) x
e
xT=X(1+T-OL) + ot

Single-pulse measurement

X1 T Ve, T
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_ 0
v, TV (1+a+d+€)
X
X, = ——————— + 0 = x(l-0-8-€) + o

1 l+a+6+¢

Double-pulse measurement

2%, = 2a - (yg+yg)

2x 2a = (y1+y2) = 2a = (y0+y?) (1+a+s+e)
1 2

ne

X x(1-a-6-g) + a(oa+8+g)

1T
From these expressions one derives the quantities

Absolute errors

o -t - (§+T+e)x

o]
|
M
]

I T
Xpg ~ Xp = "t + (a+8+e)a - (S+T+e)x
Xp ~ X = "o+ (a+d+c)a

To first order, one can replace x on the r.h.s. by Xp OF Xy«

Relative errors

Again to first order, the relative errors are found straightforwardly:

L T _(eree) + L
xI xI

11T _ (S+rec) + ST L+ (a+Ste)a
*11 *1

The relative error of the corresponding emittances is just twice the r.h.s. The
absolute errors of measurements of beams with various dimensions should fall on a
straight line in a plot of these errors as a function of x, whose intersection with
the y-axis represents the target error (assumed to be of offset type) and the slope

yields § + T + g; (a+8+T)a is the distance between X and Xrpe

Essentially the same information can be obtained from a plot of relative emit-
tance errors versus 1/x (Fig. 18). Here the straight lines fitting the single-
and double-pulse errors should intersect on the y-axis at -2(8+T+g). This gives
an additional comstraint and thus facilitates the fitting. The slope of the single
pulse (I) straight line equals -2t, whereas the angle between the two straights
is given by 2(0+8+c)a. Whenever o + § + ¢ + o the two measurements I, II differ.
In fact, a + § + € is the relative error of the computed bump amplitude. It can

even be determined without any target measurement by comparing the "reconstructed"
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aperture value with the physical one. The former is obtained by adding the bump

amplitudes for zero beam radius y° + y° for the two polarities (assuming o = 0):
P a as P g

2a
l+o0+8 +¢

0
ax =3

= (yal+ya2)/(l+u+6+8) =

In order to compensate for the unavoidable (systematic) errors o + § + €, one can
numerically adjust the calibration such that y;l + ygz = 2a, i.e. multiply the
computed bump amplitudes by the factor 1 + a + § + £ found from aperture reconstruc-
tion. After this correction o + 8 + €/ = 0, and the results of both measurements

should agree by virtue of

- = !
Xpp T OXg (o+8+e’) a

and the data points of both relative errors should fall on one single straight
line. This new straight line is parallel to the uncorrected line I (slope o-t)

but displaced by e’ = =(o+8). Its intersection with the y-axis gives
-[6 + T - (a+6)] =0 - T
Systematic measurements thus allow one to determine relative errors of B functions:
a-T,0a+8
and systematic target errors tt = t/§¥7éz where we neglected € and o.

7.2 Experimental results

The analysis exposed in the preceding paragraph will here be demonstrated on
a series of measurements in Ring 3. Horizontal and vertical target measurements
were performed on the 800 MeV flat top, after the synchronization (of the RFs of
the four rings) is finished. Four different test beams per plane, with dimensions
varying as widely as possible, were shaped by the 'shavers" (pulsed dipoles for
controlled emittance and intensity reduction, driving the beam into the Beamscope

aperture restriction).

The principal difficulty of these target measurements consists in the inter-
pretation of the loss pattern provoked by the interception. As Figs. 1 demonstrate
there is not a well-defined loss that can easily be tuned to 5% by adjusting the
target position. In fact at least two, sometimes more, loss phases can be distin-
guished. From target monitoring signals (see Fig. 22) one can infer that the
first loss, occurring 35 ms after the target trigger, corresponds to the plunging
of the target arms through the beam. Subsequent losses are probably due to
residual vibrations of the arms, theoretically at rest in fully plunged positions.
In addition, one cannot completely exclude a reaction of the beam (e.g. via the

Beam Control System) to the loss.
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Finally, it is not obvious which loss can be related to the calibration of

the targets, which was done by interception of a pencil laser beam on the bench.

To deal with all these unknowns, Beamscope measurements have been compared
with two different interpretations of target results; comsequently there are two
sets of measured points in the scatter plots of Figs. 20, taking either the first

loss or the second loss for the correct one.

Discussion of results

Figures 20a(b) show the error in the reconstructed horizontal (vertical)
aperture for the uncompensated and the compensated data. As explained in subsec-
tion 7.1, compensation means that a calibration error €’ has been deliberately
introduced so as to make the aperture reconstruction correct. These diagrams

allow one to read immediately the compensations e’:

1 - ! -
€hor. 2.5% , €ert. 1.17 .

Figures 20b,c show the relative emittance error versus l/beam radius obtained
by single~ (I) and double-pulse (II) methods for first and second target loss,
respectively. (To first order, the relative emittance error is just twice the

relative amplitude error used in the analysis.)

Straight lines fitted through the corresponding clusters of points must inter-
sect on the vertical axis (this means that all target measurement errors vanish

when related to a beam of infinite radius).

Figures 20e,f display the same data after application of the compensation as
found from Figs. 20a,b. The two straight lines I and II have now collapsed into

a single one: single- and double-pulse data now virtually coincide.

Following subsection 7.1 and Fig. 18, we obtain (¢ and o neglected, which is

a reasonable assumption)

Ring 3 Horizontal | Vertical
2(0+8) 2.5% 1.1%
2(o—T) - 97 217
tt (1st loss)| 0.11 mm 0.36 ‘mm
tt (2nd loss)| 0.46 mm 0.94 mm

These results reveal reasonable and, for the horizontal target, even small syste-
matic target (offset-type) errors, when the first loss is taken to be the repre-

sentative one. But the measurement also suggests substantial errors o - T in the
conversion factor /§X7§¥, probably due to deviations of the true lattice functions

from the computed ones.
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This leads to the paradoxical effect that for large beams the second-loss
interpretation of target measurements gives better agreement with Beamscope. With
perfect targets, relative differences between Beamscope and target emittances will
be just 2(a-T) and thus of the order of -9 or 217, respectively. Since there is
no simple means of measuring B-functions and phases in the PSB, it is not possible

to tell which kind of measurement is the better.

What is done in practice is just to adjust the compensation of &’ such as to
make the aperture reconstruction correct to ensure identical results for single-
and double-pulse measurements and quote the results found as "Beamscope emittances'".
As explained, they may differ from "target emittances" owing to the effect of lat-
tice function errors and to the ambiguity in the interpretation of target—induced

loss.

EXAMPLES OF APPLICATIONS

8.1 Standard applications

The standard application is the operational measurement of transverse beam
emittances, complemented by a display of betatron amplitude distributions, as
already given in Fig. 15. The latter is important particularly for measurements
at injection, where the amplitude distribution affects the achievable performance

of the machine.

Detailed amplitude profiles or series of profiles, being available with dif-
ferent display options (Figs. 5 and 15), are useful for the identification and com-
pensation of stopbands. Also the filling of the apertures during the injection
process can be monitored and improved "on-line".

8.2 Measurement of two—dimensional amplitude
(emittance) distributions

Knowledge of the two~dimensional amplitude distribution n(ax, az) right after
injection resp. trapping is of particular interest for a space-charge limited
machine such as the PSB: shaping this distribution by various techniques was a
major contribution to the rise in machine performance in the last years?®), Some of
the achievements empirically found could be explained from the two~dimensional

amplitude distributions measured.

The principle of the method is straightforward: one has a target progressively
plunging in one plane while taking a series of Beamscope profiles in the other.
In the computer, the differences between the successive profiles are evaluated to
produce a matrix of N X N cells in a. a space (N being the number of profiles
belonging to different target interceptions covering the range of vanishing to
maximum amplitudes). The number of protons in each cell is computed and given. Of

course this method critically depends on pulse-to-pulse stability of the beam.
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The projections n(ax’z) = f n(ax, az) daz,x of the matrix on the x, z axis give
histograms of N bins which should coincide with Beamscope amplitude profiles in
the x, z plane, respectively. This is illustrated in Fig. 21. A further check

of the validity of the measurement technique consists in having the target of the
same plane plunging as the Beamscope profile is taken: in this case only the main
diagonal of the matrix should be filled. 1In principle, it should not matter which
plane is used by the target and which one for Beamscope. In practice, however,
and in particular early in the machine cycle, significantly different results were
obtained for the two combinations. In addition, matrix projections agreed better
with the Beamscope profile in the vertical plane. The explanation of the discre-
pancy suggests the presence of coupling between the two transverse planes: for
difference resonances, mEX + nEz are constants of the motion (Ex and Ez are emit-
tance variables, m and n are integers). It is easily seen that such a beating
distorts the measured two~dimensional distribution in the sense that each particle
is intercepted at its maximum beating amplitude in the plane of the (comparatively
slowly plunging) target. Moreover, for n > m, the beating has less effect on the
result obtained with vertical target and horizontal Beamscope measurement than on

the other combination, and vice versa.

Nevertheless, fairly consistent measurements were performed with high-intensity
beams. From the matrices obtained, one can complete (off-line) the maximum Laslett
space—charge detuning. The results obtained with different types of beams confirm
that the PSB intensity is always limited by its peak incoherent Laslett Q—shiftzs).
At present, the target has to be controlled manually. This is not a decisive
drawback since the duration of a measurement is still negligible compared to the
preparations and checking procedures (note, as an example, that finding the target

position corresponding to the centre of the beam is a tedious exercise).

8.3 Investigations on target functioning

Profile series taken during the target plunging and/or interception phase
allow one to gain some insight into the behaviour of the individual targets. The
target, a pair of long-armed forks where the distance between the arms can be set
individually, swings laterally into the beam, is supposed to stay quietly in in-
tercepting position, and swings out afterwards, according to the velocity program
indicated in Fig. 22. Figure 23 depicts a case where the target, after the phase
of plunging into the beam (v 2 ms), still undergoes slow motion towards the beam
centre, as can be seen from the profiles as well as from the beam transformer sig—
nal: the latter shows two phases of rapid and slow loss. Obviously the position of
the target is not well defined owing to its unprogrammed vibrational motion during
the interception phase. Note the finite slope of the intercepted beam edge: it
corresponds to the intrinsic resolution limits of Beamscope as described in Sec-

tion 3. Also remarkable is the pulse~to-pulse stability of the PSB beam at ejection.
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8.4 Determination of closed-orbit amplitude
at the Beamscope aperture

As explained in subsection 2.1.1, the single-pulse method yields as a by-
product the amplitude X0 of the closed orbit. Performing a complete measurement
[for example, using the program "Emittance measurement/target comparison (33)"]
of the menu (see subsection 6.2 and Fig. 14), this quantity is printed out. It
is of some importance because the Beamscope precision collimator constitutes at
the same time the acceptance limit of the PSB; a non-negligible closed-orbit ampli-
tude at this azimuth automatically reduces the maximum achievable performance (see
Ref. 25). Since there is no pick-up right at the collimator, any correction of

the closed orbit at this point can only be monitored by Beamscope.

POSSIBLE IMPROVEMENTS, RELATED CONSTRUCTIONS, OUTLOOK

9.1 Possible improvements of the existing system

Apart from the continuous small improvements to the hardware and software, a

few more substantial modifications seem desirable:

a) computer control of the references of the power supplies (at present set manual-
1y);

b) automated Q-measurement prior to a Beamscope measurement [at present being typed
in: not too much bother, since the working point hardly changes, and the specific
values are stored on the disk files (see Section 6)].

c) speeding up execution by introduction of local (in the CAMAC crate) LSI proces-—

sors, thus reducing the data load on the CAMAC dataway.

Improvements (a) and (b) are foreseen, at least in principle, for the Beam-
scope version converted to the new control system; (c) may become unavoidable if

the FEC of the PSB in the new control system is too heavily loaded.

9.2 Related constructions

As far as I know, the only existing device comparable to Beamscope is the
"Fast Rotary Scraper" of the 12 GeV KEK Proton Synchrotronzs). A finger on a
rotating arm is moved into the beam by means of a stepping motor. Ensuing beam
loss is recorded by a beam current transformer, the finger position by means of

a precise. linear potentiometer.

Mechanical interception of the beam looks a priori more attractive than driving
the beam into a fixed collimator. In fact, this approach was already envisaged when
the implementation of Beamscope began. The idea was rejected, however, mainly
because the PSB is actually four machines, and multiplexing three fairly simple
power supplies between the already existing dipole stacks was obviously cheaper.

In the common case of a single-ring machine, the mechanical approach appears more
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advantageous. It eliminates, in any case, a lot of error sources as well as acqui-
sition and computing effort for the calculation of the bump amplitude of our "electro-

magnetic" approach.

Interception of the beam with a carbon fibre??) or thin wire?®), although
mechanically comparable with the KEK device, essentially differs from Beamscope
in yielding the projected density instead of the amplitude distribution. This draw-

back is counterbalanced by the negligible beam loss caused by this type of monitor.

9.3 Outlook

The mechanical resemblance between carbon-fibre monitors and mechanical
"Beamscope" realizations suggests unification or multiple use of the driving mecha-
nism for both devices. But it is only consequent to go one step further: in today's
fully computer-controlled accelerators, the classical concept of a measurement tar-
get with expensive precision drive is hardly justified —— even more so as the preci-
sion of these drives together with that of the position transducer (e.g. a linear
potentiometer) was not always as high as one might believe. The more promising
approach for new developments appears to be a cheap, smooth, but not precise driving
mechanism complemented by an optical position sensor, which acquires the actual
instantaneous position of the target. The position can then be sampled at will and
this information used for a servo-loop controlling the drive. In this way any de-
sirable motion (at rest at a given position, fast or slow interception) can be rea-
lized. Such a device, which I would call a "General Target System", could perform
common target measurements, fast Beamscope emittance measurements and amplitude
profiles, and/or, when equipped with a carbon fibre, low-loss density-profile mea—

surements too.

A schematic and oversimplified sketch of such a General Target is given in
Fig. 22. The rectilinearly moving system shown for clarity may well be inferior
to a rotatory one, requiring less bellows contraction. Here an electromagnetic
(linear) motor or a pneumatic (no e.m. fields perturbing the beam) drive is control-
led by a microprocessor or hard-wired logic. Position is acquired by optical or
fibre-optical reading of binary coded length marks, directly applied on the main
rod. The structure has to be sufficiently rigid that vibration amplitudes stay
below the required resolution. The carbon~fibre detector can intercept the beam
when the main rod is turned around. But even if this complication is to be avoid-
ed, obviously the same system is suitable for both the carbon-fibre detector and
the General Target System. It is very likely that the cost of such a multiple-

application device is substantially less than the sum of costs of separate devices.
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Fig. 16 Axonometric display of a series of normalized amplitude profiles.
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1.0

0.4

BEANSCOPE TEST 20/ 5/1981 15140147 SER. 304
IPL 3 RING 2 VERT.

D 150 FRORM FTR B o S918 G

SANPLING INT. 7 US, ACQ.DELAYS 1000, 1000 US

NR POL P/P EMITT. ENITT. BEAR R. C.0. APERT. APERT.
€16 BuUn ERR. ERR. ERR.
COR (%) mn) ) M) (%)

1 1 448 @22.7 11.62 -0.93
23.2 11.78
2 443 2e.7 11.11 -0.42
21.9 11.42 -0.58 29.08 1.67

Fig. 17 Output of one of the detailed emittance measurement programs (No. 33 of
the menu of Fig. 14), giving beam radius and emittance of the computed closed-orbit
amplitude and the '"reconstructed aperture" and its error. If a comparison target
measurement was made and input, relative emittance and absolute beam radius error
would be computed too.
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Fig. 18 Scatter plot of Beamscope versus target comparison measurements: plot of
Ae/e versus 1/x.
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Fig. 19 Beam loss patterns due to target measurements: interpretations of "5% loss'.
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Fig. 20 Results of comparison measurements Beamscope versus targets for Ring 3.
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Fig. 21 Two-dimensional amplitude distribution (in 10'° p per cell) derived from a series
of 10 horizontal Beamscope profiles with 10 different positrons of the vertical target.
Left: comparison of the vertical projection histogram of the matrix with a vertical
Beamscope profile.

-~ velocity program

= transducer signal
(velocity and induced
voltage from driving
coil)

target return
advances phase
= I

(target at rest
'in intercepting position

Fig. 22 Reference signals in velocity program of PSB Measurement Targets.
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Fig. Beamscope profile series showing a) correct and b) faulty behaviour of a

plunging target. In (b) the target continues to penetrate slowly into the beam,
causing slow loss which is visible on the beam current signal (left). In (a) the
target stays quiet once plunged and there is no beam loss during this phase. Time
increment: 1 ms between Beamscope profiles.
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Fig. 24 Basic principle of a General Target Device.
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Appendix
The Resolution Function R(r,p) of a measurement device links the observed
response x(r) to the true response t(r):
x(r) = S R(r,p) t(p) dp , J R(xr,p) dp =1.

For a sharp (true) respomse t(r) = 6(r-ry), the observed response is the resolu-

tion function itself:
x(r) = R(r,ry) .

Referring to Fig. 7, R(r,p) is determined by the arc length of the phase-space

trajectory intercepted when the target advances from p to p - dp.

The resolution function also depends strongly on the fractional part q of the

Q value; in order to describe a beam of a Q spread G(q), one has to compute

R(r,p) =qu R(r,p3;q)G(q) , fG(q) dg = 1 .
In the following we compute R(r,p;q) only and drop the argument q.

We will make use of the following variables:

M/N, the fractional part of Q, assumed to be rational;

12

M,/N;, the "closest resomance" with small N, i.e. N; < 10;

s hg =M1 M_M = e
§ = | Ny i A= 218 i
n, the revolution number from the beginning of interception of amplitude r;

2¢, the arc length intercepted during the nth revolution (see Fig. 7):

¢n = arccos [1 - Eﬂ] 5

r

d the target advance per revolution;
2
=+ — B Ty
= =r P s E_r’ n =/1 oz "

The (already normalized) loss per turn depends on the occurrence or not of over-

lapping cuts. Referring to the cases of overlap as depicted in Fig. Al, we have

the expressions

ARn(r) = (1/2m) X

/2¢n case (a), no overlap: n < N; or ¢n + ¢n—N1 < 218
¢, - ¢n—N1 + 2m8N, cases (b,c), partial overlap: ¢ - ¢n—N1 < 2m8N, <
i E ¢n * ¢n-N1
2(¢_ - ¢n—N1) case (d): 2méN; < ¢ - ban,
\2(¢n ) case (e): n > N } full overlap
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The resolution function follows straightforwardly by division through d and with

n=x/d=r1r- p/d:

26(x) (a)
1 d(x) - ¢(x-N1d) + 2mON; (b,c)
R0 =503 | o) - o(x-N1a)] (@
L ox) - d(x-Nd) ] (e)
¢(x) = arccos [1 - %)

6(x) - o(x-Nya) = Nya B

R(r,p) is different from zero only for pmin <p<ry Prin is determined by the con-—

dition that the whole arc 27 is scraped off:

r Xmax
j‘ R(r,p) do = 1  or jf R(r,x) dx = 1
pmin v

For § sufficiently large, one can assume that there is no overlap, or very little,
until the whole arc is intercepted. In this case Prin is solely determined by ex-

pression (a):

r

2 Pao=ETn- /I-n? ; =
omd j. arccos - dp T [n 1-n“ arcsin n] 1

Pmin

In order to check the range of validity of this expression, we compute x;, the

cross—-over value between cases (a) and (b,c):
¢(x1) + o(x1-N1d) < 2méN, ,
or
20(x1~N1d/2) = 2méN,
arcsin y; = y1 = TN

2 _ (p1 *+ N1d/2)% | 2x; + Nid
vy = 1- r2 - T

] wZSZNi



(=N

x ., TN Nd
T 2 2r

2m8N; = ¢(x1) + ¢(x1-Ni;d) = arccos [1 - %LJ & Z%L for small %L-

Comparing x; and X ox Ve obtain an inequality for § giving the condition for es-

sentially non—overlapping scraping:

max _ 3oL (30d)7 2L paer
= e 5 [3ﬂr ) ™ N16 s
12
(=)
§ > 8 = ~—— .
N,

Another cross—over x;(0) between cases (b,c) and (d) of Fig. Al, i.e. between
partial and full overlapping, is important. We obtain it from the condition (see
Fig. Al)

2 2
_ _ _ _p_ _ p” + Nld
2TN;§ = ¢n2 ¢n2—N1 = arccos arccos ————
1
2\"%
ST R Y B T
r Tz Tn,
N2 = d/(2ﬂ6r) = %— = V2X2/r .

Plotting 8(x;) and &(x2) in a § versus x/r diagram (Fig. A2), these curves separate
the different regimes of overlapping; when computing R(r,p) and X ax® O0€ notices

that one has to distinguish five cases (I)-(V) of 6.

The (in some cases approximate) expressions for R{r,x) are compiled below:
X o is given only for the limiting cases (I) and (V); the expressions for the
intermediate cases are complicated and of little practical interest.

The table on the opposite page gives the normalized resolution function

R*(x/r) = r R(r,x) for the various cases, using the following expressions:

R; = %5 arccos (1 - &) (no overlapping)
1 8 . .
Ry = Nl[fﬁﬁ + 5] (partial overlapping)
N, .
Ry = o (full overlapping)
13
3mo
g1 = kauTe)® 81 = 50—,
1 (20)% 8
£ = M0, 6 = 2 ()", 65 - 22,
82 B

N,

£3=_—: 6'-}= )
gm242 2WM2[1—cos E—}
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where
8=d/r, E£-=x/r,
Seha N CoeR,
- A
*
Domain R () = r R(x,x)
Notation | Limitations | Expression Validity
Fig. A2
= L 2
I § > &y R; 0<g<i _=%03m)%

I1 8§, < § <6, R, 0<g<g,
Ry €1 <&

I1I §3 < 8 < 6, Ry 0 <E<iky
Rz €2 < §

v 8y < § < &3 Ry £ <&
R3 E2 <E < E3
Ry €3 < &

v 0 <8 < 8y R, £ <&,
il

R3 2 <E <&y =1~ cos N

The resolution function as determined by computer simulation is depicted in Figs. 9
(for various values of § or q, respectively) and 10 (with d/r as parameter, for a
q far from a resonance, domain I). Figure A3 is the simulation equivalent of
Emax(é) of the schematic Fig. A2. Almost the whole length of the curve Emax(G)

is of the partial-overlap type. Full overlap gives Emax =1 - cos m/3 for

8§ < 84 = 0.0004 and no overlap occurs for § > §; = 0.024. Practically the best

resolution is already attained for § > 8§, = 0.009.



_58_

(a) No overlap:
¥n-N1 B o ¢n+ yYn.Np < AD
‘ /
AD = 2T 8‘ N1
“n
BT
n
(D)
n
Ap
th-Ny Partial overlap:
Yn - Yn-N1 < Ap < Wn o+ Yn-N
(c)
@n
Ap
¥n-N1
(d} Full overlap:
n A < pn- Pn-Nq
Pn-N1
Ag or
(e) n>N

Fig. Al The different cases of overlapping cuts and their conditions.
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