Computation of accelerator aperture and its
application to LHC

Ivar-Kristian Waarum
Ser-Trendelag University College

Bachelor project, 2004

Faculty of Technology

004 Trondheim

Department of Electrical Engineering

SOR-TRONDELAG UNIVERSITY COLLEGE

Project Report

Project Title:

Computation of accelerator aperture and its
application to LHC

Oppgavetittel:

Datastyrt beregning av strilerom 1

partiklcelakselleratorer, med utgangspunkt 1 LHC.

Date:
25.11.2004

Pages/Appendix:
64i38 + CD

Participants:
Trar-Eristian Waarum

tvar_waatumi@hotmail com

+47 37735444

STUC Supervisor
Iforten Christian 3vensson
morteni@iet hist.no

+47 73555608

InstituteBranch of study:
Program for elekiro- og datateloniddc f

Project number:

Automatiseringstelonikde 7
Employer: CERN Supervisor:
CEEI I. Eernard Jeanneret
Accelerators and Beams department Jbj@cernch

Accelerators and Beam Physics group

+41 22763130

Completely available E
Avalable after agreement with employver I:I

01.12.2004

The report is available as from

Preface

This report is the written result of the subject “P0500E - Hovedprosjekt i
automatisering”. Normally, this is a 18 study point subject carried out in the
spring semester of the year of graduation as an engineer from Sgr-Trgndelag
University College. The author enjoyed the priviliege of being offered a con-
tract as a technical student at CERN, Geneva, in the context of the graduation
project. Working one year in the Accelerators and Beam Physics group was
an extraordinary experience, giving a glimpse into new physics subjects and
a working environment applying high levels of innovativity and thoroughness
while handling advanced engineering issues of particle experiment machinery.
This is the type of experience that motivates a student for new educational
goals.

A major challenge was the introduction to a subject completely new to me,
that of accelerator physics. Programming I knew to an extent, but for the
outcome to be as good as possible it is important to understand the why’s and
the total picture. A programmer must know the needs of the end-users. Feeling
I succeeded in this, the report was made accordingly, with a focus on background
information as well as programming technicalities.

The report describes a finished product. It is fully capable of aperture anal-
ysis of the LHC and other machines. However, since I was offered to extend my
contract, we will continue working on the project in 2005 to add the possibility
to treat special-purpose magnets in the experiment regions. The updated re-
port will be released this spring as a CERN document on accelerator aperture
computation.

Well-deserved thanks goes to my supervisor Dr. Jean-Bernard Jeanneret, for
providing his enormous knowledge of professional skills and method of working
“slowly and step-by-step”. To Dr’s. Werner Herr and Eric D’Amico for help
with MAD and C programming in general. To my STUC supervisor Dr. M. C.
Svensson for his encouragements directing me towards CERN in the first place.
And last but not least to office mate and soon-to-be Dr. Jaroslaw Pasternak for
answering twenty thousand questions about accelerators and particle stuff.

Meyrin, Geneva 17.11.2004

Ivar-Kristian Waarum

Summary

Design and construction of a particle accelerator machine of todays measures is
a tremendous engineering task, for which calculation and analysis would be an
overwhelming job without specialised tools. This report describes a module in
a computer program used for simulating and designing such particle accelerator
machines. The task of the module is to calculate the aperture around the beam
at every point in the machine. Initially, a short introduction to accelerator
theory is given, and important terms explained. The computer program itself
is presented along with an example of usage in Chapters 3 and 4. In order to
understand more of the background for the project, chapters 5 and 6 present
the particle beam and the pipe containing it, as well as an introduction to col-
limation and the importance of protecting the machinery against heat transfer
from the beam. One issue of the project was how to model the beam and the
pipe in the computer program. The solutions for this are also presented, both
how they were programmed and the geometrical considerations behind. Chap-
ter 7 elaborates on movement and oscillations of the beam and error tolerances
of the pipe, and gives an understanding of the accuracy and precision needed
in the construction of a machine of this kind. Solutions of the main problem,
how to calculate the aperture, is given in Chapter 8. The interesting part for
the end-user is Chapter 9, which shows the module output and gives ideas on
how the module can be used for analysis. Throughout the report are references
to functions in the source code, all of which can be found in Appendix D.3.
Documentation on the source code can be found in Appendix A as explanations
of functions and parameters, pseudo code and a data flowchart. A user’s guide
for MAD-X users is included as Appendix B.

For background information on the project itself, see the report from the pre-
project, included on the project CD. On this CD one also finds the total program
source code and some appendixes which was impractical to include in paper for-
mat.

Contents

1 Introduction
1.1 Why accelerators?
1.2 What is CERN?
1.3 The role of the author
1.4 Basicsonagoldenplate
2 Concepts of accelerator physics
2.1 Bending a particlebeam 0 oL
2.2 Focusing a particlebeam o oL
2.3 Phase-space and sigma distribution o000
2.4 Dispersion e
2.5 Twiss parameters oo e e
2.6 Apertures
3 MAD
3.1 Overview and functionality
32 Input. e
3.2.1 Initial beam properties
3.2.2 Initial hardware properties
3.3 Inside the CONTROL sourcecode
3.3.1 Structure variables
3.3.2 Tablesand output
4 MAD-X practical example
4.1 Theory o e e e e e
4.2 Practice e
5 Beam pipe
5.1 Hardware
5.2 Physical aperture shapes o L.
521 Circle e
5.2.2 Ellipse
5.2.3 Rectangle oo Lo
5.2.4 LHGCscreen
5.2.5 Rectellipse
5.26 Racetrack Lo o
5.3 Rectellipse-based beam screen polygons
5.4 Racetrack beam screen polygon oL

IT

T N L

© 00~ O ot

CONTENTS

6 Beam halo

6.1 Normalized coordinate system
6.2 Beam loss problems 0.
6.3 Collimation
6.4 Halopolygon
6.5 Halo oscillations o

7 Error tolerance and special cases

7.1 Total displacement oL
7.2 Closed orbit errors L o
7.3 Mechanical and alignment tolerances
7.3.1 Racetrack algorithm,
7.4 Dispersion e
7.5 Purposely made displacements
7.5.1 Injection and axis displacements
7.5.2 Separation displacement

8 Calculation procedure

8.1 Escaping beam halo? L
8.2 “Dented” beam pipes: not simply connex polygons
8.3 Tool functionso
8.3.1 Line equations
8.3.2 Intersection point verification
8.4 Summary

9 Output and project results

9.1 Output for theend-user
9.1.1 Regulararccell
9.1.2 Collision region
9.2 Projectstatus
9.2.1 Requirements and achievements
9.2.2 Futureplans
Glossary
Bibliography
Appendices
A Aperture module documentation
A.1 Pseudo-code: aperture
A.2 Pseudo-code; aperture_calc
A3 Functions
A3.1 adj coord quadrant.
A32 adj halo si.......
A3.3 aperture L
A3.4 aperture calc.o
A35 builld pipe
A3.6 check if inside L.
A3.7 external file oo oL

II1

30
30
30
32
33
35

38
38
38
39
40
43
46
46
48

50
50
51
53
53
54
35

56
o6
56
o7
58
o8
99

61

63

CONTENTS

A.3.8 fill aperture header.
A39 fill polygon quadrants
A3.10 intersection Lo
A3d1 linepar
A.3.12 make rectellipse L.
AB313online
A3 14 pro_aperture
AB15race
A3.16 read twiss_param
AB17trim ws
A.3.18 write_aperture _table

B Aperture module user’s guide

C Sine and cosine proof

D Appendixes on CD-ROM

D.1
D.2
D.3
D4
D.5
D.6
D.7
D.8

Important structures in CONTROL
File output from MAD example
Aperture module sourcecode
Total MAD-X source code
Tables from Chapter 9
MAD-X User’'s Guide
Preproject
Electronic version o oo

v

81
82
83
84
85
86
87
88
89
90
91

93

List of Figures

1.1 Geographical map over CERN
1.2 Some accelerators and beam lines at CERN.

2.1 Circular trajectory of a particle.
2.2 Cross-section of a quadrupole magnet.
2.3 Beamenvelope. oo e
2.4 Momentum differences due to the acceleration method.
2.5 Phase-space plot close to a focusing quadrupole.

3.1 Overview of MAD-X dataflow.

4.1 The LHC injector chain.
4.2 Lengths and angle of a bending magnet.
4.3 FODOcell. e
4.4 Betatronic functions. Lo

5.1 Magnet elements: Quadrupole, sextupole and dipole.
5.2 LHC beam pipe.
5.3 Circular beam pipe description.
5.4 Elliptical beam pipe description.
5.5 Rectangular beam pipe description.
5.6 LHCscreen beam pipe description.
5.7 Rectellipse beam pipe description.
5.8 Racetrack beam description.o oL
5.9 Rectellipse approximation.
5.10 Building a racetrack-like beam screen polygon.

6.1 Coordinate system normalized to particle density.

W N

© 00~ O ot

6.2

6.3 Multiple Coulomb scattering and direct interaction.
6.4 Simulated secondary and tertiary halo after LHC collimation. . .
6.5 Primary and secondary halo descriptions used in the LHC.
6.6 Halo parameters.
6.7 Quadrant mirroring.
6.8 Polygonized beam halo.
6.9 Changes in halo shape according to betatronic function.
7.1 Total displacement. oL
7.2 (Unwanted) dipole-effect in quadrupoles.
7.3 Mechanical and alignment error plot of LHC bending magnet. . .

Primary collimators in the first quadrant.

\%

32
33
34
34
35
36
36
37

39
40
41

LIST OF FIGURES VI

74
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14

8.1
8.2
8.3
8.4
8.5
8.6

9.1
9.2

Al
B.1

C.1
C.2

Racetrack parameters. oL oL 41
Racetrack outline. 42
Sine rule used on first quadrant of a racetrack. 44
Displacement due to dispersion and dp. 45
Overview of LHC Injection Region for beam 2. 46
Enlarged right part of Fig 7.8; Injection region for beam 2. . . . 46
Possible errors in MK1. 47
Enlarged middle part from Figure 7.8; D1 and D2 kickers. 47
Aperture bottleneck. Lo 48
Enlarged part of Fig 7.8; Quadrupole triplet. 48
Particle beam inside a quadrupole triplet. 49
Point inside polygon check. 50
Sign of sine and cosine functions. 51
Largest possible size of halo. 52
Dented pipe polygon 1. oL 52
Dented pipe polygon 2. oL 53
Point on line segment check. oo 55
Aperture in aregular arccell.o o7
Aperture in an injection region. oL oL 58
Overview of the aperture module functions. 70
Plot example in user’s guide. 96
The area S given by two vectors. 97

Vector rotation.o 98

List of Tables

3.1 Example of MAD-X output to file., ... 15
3.2 Example of MAD-X output to screen. 15
5.1 Apertypes supported by MAD-X. 23
5.2 Parameter treatment for circle. oL 23
5.3 Parameter treatment for ellipse. 24
5.4 Parameter treatment for rectangle.o 24
5.5 Parameter treatment for LHCscreen. 25
5.6 Parameter treatment for rectellipse. 26
5.7 Parameter treatment for racetrack.o 26
7.1 Problematic radian values. oL 42
7.2 Displacement adjusted to worst-case for quadrant. 45
A1 adj coord quadrant function parameters. 71
A2 adj coord quadrant internal variables. 71
A3 adj halo_si function parameters. 72
A4 adj halo_siinternal variables. 72
A.5 aperture function parameters. L. 73
A.6 aperture internal variables, part 1. 74
A.7 aperture internal variables, part 2. 75
A.8 aperture_calc function parameters. 76
A9 aperture calc internal variables., ... 7
A.10 build _pipe function parameters. 78
A.11 build _pipe internal variables. 78
A.12 check if inside function parameters.. 79
A.13 check if inside internal variables. 79
A.14 external file function parameters. 80
A.15 check if inside internal variables. 80
A.16 fill aperture header function parameters. 81
A171ill aperture header internal variables. 81
A.18fill polygon quadrants function parameters. 82
A.191ill polygon quadrants internal variables. 82
A.20 intersection function parameters. 83
A.21 linepar function parameters. L. 84
A.22 linepar internal variables. 84
A.23 make rectellipse function parameters. 85
A.24 make rectellipse internal variables. 85
A.25 online function parameters. 86

VII

LIST OF TABLES VIII

A.26 online internal variables. oL oL 86
A.27 pro_aperture function parameters. 87
A.28 pro_aperture internal variables. L o000 87
A.29 race function parameters. 88
A.30 race internal variables. L oL 88
A.31read twiss param function parameters. 89
A .32 trim ws function parameters. 90
A .33 trim ws internal variables. 90

A.34 write__aperture table function parameters. 91

Chapter 1

Introduction

1.1 Why accelerators?

Particle physics as a field of research started properly at the end of the 19th
century, with the discovery of the electron (Thomson, 1898). Further elemen-
tary particles, the proton and the neutron, were discovered in respectively 1919
(Rutherford) and 1931 (Chadwick). The motivation of peering even further
down into matter by splitting the atom nucleus led to the construction of the
first particle accelerators and colliders in the 1920’s. Boosting the energy of
particles with electric charge, these machines have turned out to play an impor-
tant role in sub-atomic particle studies. Einstein’s equation E = m - ¢? states
the relationship between energy F and mass m. As more energy is applied to
a particle, more mass may be created in a crash. Over time these machines
have grown in size, energy level and complexity, and have opened doors into
new areas of physics. The most recent accomplishments includes the discov-
eries of quarks, and as higher collision energies will be reached in the future,
we will learn even more about the fundamental building blocks of nature. Now
a common tool, particle accelerators are used for education and research at
universities and laboratories around the world.

1.2 What is CERN?

The most complex network structure of accelerators in the world is situated
at the European Organization for Nuclear Research (CERN), Geneva [1], see
Figure 1.1. Meant to be Europe’s answer to the huge progress in American and
Japanese science and technology in the first half of the 20th century, CERN
was founded in Geneva in 1954. This would initiate a prosperous era for Euro-
pean scientific and elementary particle research activity. Since then, extensive
experiment research, scientific discoveries and three Nobel Prize winners have
made CERN an important, if not the most important, nuclear research organi-
zation on world scale. Today, CERN employs 3000 workers on different levels, in
addition to almost 6500 visiting scientists and students from all over the world.

Figure 1.2 is an overview of the main accelerator structure. The different
machines provide particles to a number of different experiments, and allow treat-
ment of and research on protons, antiprotons, electrons, positrons, muons etc.

CHAPTER 1. INTRODUCTION 2

e ,f+++4-*"‘" .'{_ T CERN sites
"L"H —e accelerator

=
L}I'DF‘I IIE’_&_J ® LHC experiment gy
——— motorway
Chamonix {
ITI

road
O ﬁgde, . (Mont Blanc)

Figure 1.1: Geographical map over CERN, the LHC and its ex-
periments. Placed on the border between France and Switzer-
land, the laboratory is an international effort in all matters.

The experiments have different demands to energy level of particles, the quality
and intensity of the beam, and other parameters. It is clear that the construc-
tion of a particle accelerator is a great engineering challenge. Currently, the
prioritized project at CERN is the Large Hadron Collider. In this 27 km long
circular accelerator, two separate beams will be brought to extreme energy lev-
els and then collided at the centres of four huge particle detectors. The amount
of energy packed in such a tiny space creates an environment not unlike the one
presumed to have been present during the creation of the universe, according
to the big bang theory. A total of 1200 large magnets and three times that of
smaller ones needs to be designed, produced and tested for this project, which
will be the world’s largest machine when finished. Scheduled to be operational
in 2007, the LHC will hopefully break new ground for the study of elementary
particles.
For more information about the LHC, see the official web page. [2]

1.3 The role of the author

One tool for construction and analysis of accelerator machines is MAD, a soft-
ware utility which simulates the beam throughput and gives information about
machine hardware requirements and beam behaviour.

This report describes a new module in the MAD program, which allows anal-

CHAPTER 1. INTRODUCTION 3

CERN Accelerators

(not to scale)

cMms

LHC

COMPASS

ALICE- % LHE:D
neairinos
Qi
East Area
e
— DTOTONS
antiprotons
— ONS
neutrinos to Gran Sazso ‘
LHC: Large Hadron Collider
G S
SPS: Super Proton Synchrotron ri7‘:];n 7‘::1 o
AD: Antiproton Decelerator
ISOLDE: Isetope Separator OnLine DEvice
PSB: Proton Synchrotron Booster
PS: Proton Synchrotron
LINAC: LINear ACcelerator T —
- o " PS Division. 02,00,
LEIR: Low Energy lon Ring Revised and adapted by Antonelia Del Rosso, ETT Div..
CNGS: Cern Neutrinos to Gran Sasso in collaboration with B. Desforges, SL Div., and

D Manglunki, PS Div. CERN, 22.05.01

Figure 1.2: Some accelerators and beam lines at CERN. Par-
ticles are accelerated in several stages, from rest energy in the
ion-sources to top energy in the experiments. A network like
this has extreme demands to design spesifications in order to
function both as a unity and at level of the individual beam
lines.

ysis of the aperture in a machine. The development and coding of this module
was the author’s responsibility, working under CERN supervisor J. Bernard
Jeanneret. The major problem issues were how to model the beam pipe and
the beam in the program, how to take into account error tolerances, and finally
how to compute the aperture. All this is treated in Chapters 5, 6, 7 and 8. The
report also gives some theoretical background that was necessary to learn in
order to understand the purpose of the module and to familiarize with concepts
and terminology specific for accelerator physics. The beam and the hardware
of the machine are presented, and regarding the method of making a model of
them in MAD, an example is worked out in Chapter 4. All source code can be
found in Appendixes D.3 and D 4.

CHAPTER 1. INTRODUCTION 4

1.4 Basics on a golden plate

Heavy subjects and wording might scare away the most curious reader. Here is
the subject in 200 words:

Particles (Ions, electrons, etc.) are drawn out of a plasma cloud by magnets.
They drift in a long vacuum chamber, are accelerated forward by electrical fields
and held together as a beam by magnetic fields. After enough acceleration, the
particles have a momentum that makes them interesting to perform experiments
on, either by crashing two accelerated particles, or by crashing a particle into a
stationary target. To keep the particles together as a beam during acceleration
is difficult. The magnets used for this must be fine-tuned. Before an accelerator
is built, simulations must be done to find out which kind of magnets to use,
their strengths and so on. One program that does these kinds of simulations is
MAD-X. One of the things we want MAD-X to be able to do, is to calculate the
amount of space between the beam and the walls of the vacuum chamber. The
basics we need to know in order to do this, are the shape of the beam, the shape
of the vacuum chamber, and where the beam is positioned inside this chamber.

The report is written for readers with engineering background. Readers with
no interest in programming will learn about the behaviour of the particles during
acceleration, the accelerator machine and how to safely run a beam through it.
Also about the MAD-X program, the basics of beam and vacuum chamber shape
and beam positioning. So just as interesting as reading it as a report on the
given project, may be to read it as a basic introduction to particle accelerators
in general.

Chapter 2

Concepts of accelerator
physics

A short introduction to the fundamentals of accelerators, and explanation of
some technical terms. The way of guiding the particles through the machine is
presented. More detailed explanations can be found in [3] and [4].

2.1 Bending a particle beam

Particles are accelerated by potential differences. A particle in a circular acceler-
ator has it’s energy increased at each turn, or each pass through the accelerating
cavity. Magnetic fields are used to guide the particles around the ring during
acceleration. The force from a magnetic field is

F=ec¢-vxB,

where e and v is the charge and speed of a particle in a field of strength B.

ace. cavity
p=p+ip

Figure 2.1: A particle moving in longitudinal direction s, kept
in a circular trajectory by vertical magnetic fields B,.

CHAPTER 2. CONCEPTS OF ACCELERATOR PHYSICS 6

The force needed to keep a particle in a circular path is equal to the centrifu-
gal force of the particle. If we consider only the horizontal plane r, the equation
becomes

mu D
e-v-B,=—=B,=—, 2.1

=" 8,= (21)
where B, is a vertical field, p the particle momentum and p the radius of motion.
For a real accelerator, By, is applied by dipolar magnets which are “ramped” (i.e.
B, is increased proportionally to p) as the particles are accelerated. A particle
in a perfect machine will stay in the same orbit, the reference orbit, for a large
amount of turns.

2.2 Focusing a particle beam

We introduce the distance x = r — p, where x = 0 as long as r does not change
from the initial value p, see Figure 2.1. Equation 2.1 says that if we now consider
a particle with initial conditions # 0 and/or 2’ # 0, it will stray from the
reference trajectory. This is usually the case, after the particles are extracted
out of the gas plasma serving as particle source. If || becomes too large, the
trajectory will not fit in the machine, so in addition to bending magnets, a
way of focusing the beam along the trajectory p is necessary. Particles with
a positive x must be pushed inwards and particles with a negative x must be
pushed outwards towards this reference trajectory. Magnets with four poles are
used for this.

hyperbolic pole contour
%X+ y=const
coil nl

Figure 2.2: Cross-section of a quadrupole magnet. A particle
following the reference trajectory passes through the centre. [3].

The horizontal forces of a quadrupole magnet are proportional to |z|. Using
the right-hand rule on the vertical magnetic fields shows that particles with
|z| # 0 are pushed toward the centre of the magnet. Using the right-hand rule
on the horizontal fields shows that particles with a deviation in the vertical plane
are pushed away from the centre. The magnet is simultanously focusing in one
plane and defocusing in the other. The method of usage is to turn every other

CHAPTER 2. CONCEPTS OF ACCELERATOR PHYSICS 7

quadrupole 90°, so that if we again consider only the horizontal plane, the effect
is focusing - defocusing - focusing etc. The overall effect is that the particles are
kept within small distances from the reference trajectory. A beam of particles
will have its maximum width in a focusing quadrupole, and maximum heigth
in a defocusing one, see Fig 2.3. The movement is called betatronic oscillations,
and is described by the S-function introduced in Chapter 2.5. The focusing -
defocusing - focusing structure is often abbreviated to FODO, and when we talk
about a FODO-lattice the F and D are quadrupoles and the O’s are bending
magnets or empty driftspaces.

focusing defocusing focusing defocusing
X
- s
X min

example trajectory

Figure 2.3: The transverse beam size is limited by the
quadrupoles. The quantities X,,q2(s) and X,,in(s) gives the
beam envelope in the horizontal plane, A,(s).

2.3 Phase-space and sigma distribution

Particles have different initial parameters z,2’,y,y’, coming from the plasma
cloud. These parameters are referred to as phase-space parameters, since they
describe the rate of oscillation change. The initial distribution of these parame-
ters is for practical purposes assumed to be gaussian, hence most particles have
small oscillation amplitudes around the reference orbit, fewer have large ampli-
tudes. When talking about a particle beam size, it is always expressed by a
certain amount of o of particles, it being the r. m. s. beam size. Fig 2.3 shows
the beam envelope for one sigma value. This gives the boundaries for particles
below a specific oscillation amplitude.

2.4 Dispersion

Another source of deviation from the reference orbit is momentum differences,
or dispersion. From Eq. 2.1 we see that a particle with p # pg will have a
circulation orbit with p # pg. The quadrupoles affects also these orbits, so
the reference orbits of particles with only momentum deviation have the same
periodicity as the beam envelope in Fig 2.3. (In addition, two particles may
have the same phase-space coordinates x,x’,y,%’, but if p; # ps they will be
affected differently in a magnetic field. Especially a problem in the quadrupoles,

CHAPTER 2. CONCEPTS OF ACCELERATOR PHYSICS 8

which will focus wrongly. This effect is compensated by magnets with six poles,
but this will not be addressed here.) The momentum differences are largely due
to the acceleration method. Figure 2.4 shows how a bunch of particles hits the

p

Proax

Prain

At, beam length

Figure 2.4: Momentum differences due to the acceleration
method.

acceleration cavity. The particles in the front end of the bunch receives a smaller
A, than particles in the end of the bunch. This means that the foremost particle
will move towards the back of the bunch, and the backmost particles towards
the front. The gap A, = Pmee=Pmin i considered to be constant, and is the
worst-case momentum deviation of a particle. Now the dispersion can be defined
as D(s) = Azp(;,),oa where D(s) is the relation between particle momentum and
position. It can be calculated from the distances between magnets, and their
strengths.

2.5 Twiss parameters

We see that to keep track of a particle in an accelerator, several variables must
be taken into account. For our purpose, we need a method to easily calculate
a particles position at all times while in the machine. Such a tool is the Twiss
matriz, which is a transfer matrix for the parameters 5(s), a(s) and v(s). These
are parameters describing particle trajectories, and can be derived from the
equations of motion for a particle. They can also be shown graphically, if we
remember that a particle has phase-space coordinates x,z’ in the horizontal
plane. In the middle of a focusing quadrupole, £ = 4, and 2’ =~ 0. Close to
this point, the boundaries for the trajectories can be represented as an ellipse
with area 7 - €:

It can be shown that the area of the ellipse in Fig 2.5 is constant for all s.
The € giving the size of the area is called the emittance, an important parameter
for beam quality. The 3(s) and 7(s) are determined by the magnet lattice. A
mathematical description of the lattice can be done by determining a transfer
matrix for all elements. After matrix multiplication and transforming the final
matrix to Twiss format, the Twiss parameters can then be calculated for any
s. The 3 describes the change of beam shape, examples are given later. An
uncertainty parameter, the beta beating factor kg, is often used in equations

CHAPTER 2. CONCEPTS OF ACCELERATOR PHYSICS 9

Figure 2.5: Phase-space plot for the horizontal plane close to
a focusing quadrupole. The beam envelope in Fig 2.3 is shown

here as /e - 1/3(s).

with 0 to give a certain tolerance for deviations from the theoretical values.

ﬂact
= Bth

where th stands for the theoretical value, and act the actual value of 3(s).
The size of the beam envelope can be found from the Twiss parameters.

Als) = v/B(s) ¢ ks (2.3)

ks (2.2)

2.6 Apertures

Methods for keeping the size of the beam small, and its path regular, has already
been mentioned. The beam must be kept at transverse size that fits in the
beam pipe, and this limitation is called the physical aperture. A similar term
not to be interchanged, is the dynamic aperture. This is the maximal betatronic
amplitude of particles following regular paths. Particles with larger amplitudes
have a more chaotic pattern of motion and impairs the overall beam quality. As
a result of this, it is necessary to “clean” the beam for the unwanted particles
at regular intervals. For this purpose, most accelerators incorporates physical
obstacles called collimators in some parts of the beam pipe. More on this in
Chapter 6.

Chapter 3

MAD

A presentation of the MAD program, first from a user point of view. Then
the structure of the source code is explained, with examples from the aperture
module.

3.1 Overview and functionality

Modular Accelerator Design: MAD is a software tool for simulating charged
particles’ behaviour in accelerators and beam lines. Developed and maintained
by the ABP group at CERN, it is one of the worlds most widely used softwares
of its kind, put to use at a number of accelerator laboratories. Constantly under
development, the current version is the tenth one, hence called MAD-X. The
structure of the program is modular in the sense that different parts of the
source code are strictly separated and independently manageable, not only as
different functions, but as more or less independent software utilities. Each of
these modules is a utility for one or more aspects of accelerator design, like Twiss
parameter calculations, single particle tracking, closed orbit analysis, or aperture
calculations. The flexible environment that allows the different modules to
be written in either C or different editions of FORTRAN (77/90/95), ensures
mutual compatibility and simplifies software updates. The skeleton basis for the
modules is a main module in C called “CONTROL”. All major i/o is handled by
the main module, which also makes it easier to delegate responsibility for the
functionality of different modules among members of the ABP group.
A short description of the modules:

twiss: Computes linear lattice functions (see chapter 2.5), element by element.

makethin: Transforms the given lattice to a thin-lense approximation. All
magnets are split into several elements of zero length, but overall perfor-
mance is matched as close to original as possible.

track: Allows for tracking of trajectory for a single particle with given initial
conditions. A number of particles can be tracked, element by element, for
thousands of revolutions around a ring, searching for unwanted behaviour
or particle loss.

10

CHAPTER 3. MAD 11

twiss (F) | | march (F)| | makethin (C) | | aperture (C)

N

——— [y

Figure 3.1: Overview of MAD-X data flow with some of the submodules.

‘ element _paremzeten“ " | CONTROL

‘ [?E&J}I})E?J‘&IIJEIEI‘S ‘

match: Gives the possibility to set some parameters of beam performance
(beta, dispersion etc.) to target values, and let MAD-X treat some el-
ement parameters as “free”. A numerical search is performed to find the
free parameters that gives the wanted target values.

error assignment: Assigns magnetic field errors, or element alignment errors.
The errors can be constant, random, gauss-random, etc, and be assigned
to specific elements or entire sections of a lattice.

emit: Adjusts the RF frequencies to obtain a specified average energy error of
a particle.

orbit correction: Corrects the closed orbit or another particle trajectory by
adjusting corrector magnets.

survey: Computes the coordinates of machine elements in a global reference
system, usable for physical installation.

plot: Support module that interpolates and plots values of data tables to postscript
files.

IBS: Computes emittance growth rates due to Coulomb scattering of particles
inside a beam.

aperture: Tracks a beam halo along the lattice, using physical information of
the beam pipe to compute available aperture.

3.2 Input

MAD calculations are based on hardware specifications of the accelerator ma-
chine and initial properties of the beam particles. Internally, the hardware is
treated as transfer matrices, giving a mathematical description of the beam line.
The basis must be given by the user, in the form of a file containing information
about the beam, magnets and other hardware. This file is fed to the program
on the command line: madx < filename. The syntax in the file resembles C.

CHAPTER 3. MAD 12

3.2.1 Initial beam properties

title, ‘‘MAD-X example’’;
beam, particle = proton, sequence = exl, energy = 450.0,
exn = 3.75e-6, eyn = 3.75e-6;

call file = ‘‘elements.seq’’;

use, sequence = exl;

select, flag = twiss, column = name, s, X, betx, dx;
twiss, save, file = twissl.out;

plot, haxis = s, vaxis = x, betx, dx;

stop;

Above is an example of a MAD-X input file. Firstly, the initial beam properties:
The type of particles (MAD contains a table of mass and charge properties for
many particle types), their energy level in GeV, and transverse emittances in me-
ters. The script reads hardware element parameters from the file elements.seq.
Twiss parameters are calculated, a table of parameters s, x, betx and dx is saved
to file as twissl.out, and the data is plotted.

3.2.2 Initial hardware properties

The hardware specifications are mostly concerning the magnetic elements. Their
type (the number of poles and their placement gives the shape of the field),
strength, length, longitudinal position and more. An accelerator usually con-
tains many elements and has a more or less periodic structure, so MAD features
the possibility to read element descriptions in a loop, see the example in chap-
ter 4. For a machine of some size it is also convenient to keep the element
descriptions in a separate file (The element input file for the LHC is almost
15000 lines long!). MAD-X provides this by letting one line of input call an
entire other file to be read, and it is common usage to separate the element
definition to a file with extension .seq. MAD-X can also treat elements like
accelerating cavities, beam position monitors and collimators. It even allows to
insert an arbitrary element in the form of a matrix. Under is an example from
a MAD-X input file.

//define beam position monitors
bpm: monitor, 1 = 0.1, apertype = rectellipse,
aperture = {0.07, 0.05, 0.07, 0.07};
//define bending magnets
mb: rbend, 1 = 2, k0=0.37, apertype = rectellipse,
aperture = {0.09, 0.05, 0.09, 0.07};

//define focusing and defocusing quadrupoles

qf: quadrupole, 1 = 0.5, k1 = 0.024, apertype = rectellipse,
aperture = {0.07, 0.05, 0.07, 0.07};

qd: quadrupole, 1 = 0.5, k1 = -0.024, apertype = rectellipse,
aperture = {0.05, 0.07, 0.07, 0.07};

start_machine: marker, at = 0.0;

CHAPTER 3. MAD 13

qf: qf, at = 0.0;
bpm:bpm, at = 0.5;
mb: mb, at = 1.5;
mb: mb, at = 4.0;
qd: qd, at = 7.0;

end_machine: marker at=circum;

A monitor with length of 0.1 meter is defined as “bpm”. Bending magnets of
type rbend with length of 2 meters and strength of 0.37 is defined as “mb”. All
elements are given an apertype definition and aperture parameters according
to physical measurements. The last lines place the previously defined elements
at specific longitudinal values. When all elements are defined, they are treated
as a whole and refered to as a sequence, through wich we can run a beam or
compute Twiss functions.

It is clear that MAD-X must be fed with a large amount of information to
be useful. Chapter 4 combines some theory from chapter 2 and this chapter, in
an attempt to show how MAD-X provides the transition between physics theory
and practice. For further examples and instructions of usage, see the MAD-X
User’s Guide [5].

3.3 Inside the CONTROL source code

We now go inside the program source code. Input and output is handled by the
main data management structure; CONTROL. In order to add a new module
to MAD-X, additions must be made in CONTROL to support it properly. As
MAD-X runs, the input script file is read line by line, while each word is com-
pared with an internal dictionary and list of commands. Some exerpts from the
aperture command definition:

char command_def[] =

"aperture: aperture none 0 0 "

"file = [s, none, aperil.out], "
"range = [s, #s/#e, nonel], "

"exn = [r, 3.75e-6], "

"nco = [i, 5], "

"halo = [r, {6., 8.4, 7.3, 7.3}], "

Here “aperture:” signifies the start of the command, and “file”, “range” etc. are
the possible arguments. The rest is argument types, either string, logic, real or
integer, and the default argument values.

CHAPTER 3. MAD 14

3.3.1 Structure variables

As information about the beam and the elements is read, a cobweb of structure
variables is created to store it. Magnets, beams, tables, sequences, all have their
own structure type. The lattice elements are tied together as a linked list of node
structures, each structure containing the description of the element. Submodules
uses these lists to access the information from the input file. Information for
the entire lattice can be searched for and extracted by starting at a defined
node—-current, and reading the node names as the node—current is set equal
to node—current—next. An excellent example of the structure system is how
to retrieve aperture information for each element:

In Appendix D.3, the function build_pipe needs the aperture parameters
of the current node. It calls the function get_aperture(struct node* node,
char* par), which returns aperture parameter varX of a node:

*apl = get_aperture(current_node, "varl");

The node has a struct element* p_elem, which points to a struct with in-
formation about the element. The element struct has a struct command* def
which points to a struct with the information from the command defining the
element in the first place. The command struct contains a
struct command_parameter_list* par, which points to a list of pointers to
its parameters. (This list contains “apertype”, “length”, etc.). The par struct
again contains a struct command_parameter** parameters, which points to
the actual parameter value. To summarize, *apl can be written as:

*apl = current_node—p_elem—def—par—parameters[1]—double_value;

Definitions of the structures mentioned above, and the functions needed to
read aperture parameters are included in Appendix D.1. These were already
included in MAD-X before project start.

3.3.2 Tables and output

Output is often saved in the form of internal tables. MAD-X creates these tables
at need, based on definitions given in the source code. These tables are “public”,
available for all modules. A good example is the table of computed apertures:

/* table descriptors:
type 1 = int,

type 2 = double,

type 3 = string */

int ap_table_types[] =

-
-
™

-

-

s 2’ 2, 2’ 2’

-

‘-HMM\E\JI\JQJ:—*-\
MMPMM
MMPM@

»

char* ap_table_cols[] =
{

llnamell s llnlll s llapertypell s

CHAPTER 3. MAD 15

llrtolll’ “Xtol“, |lytolll,

llaplll s |lap2ll s llap3ll s |lap4ll s

"on_ap" , "on_elem" , "spec" ,

"S" s l|betxl| s l|betyl| s |ldX|l s |ldy|l s "X" s l|yl| s
" " /x blank terminates */

};

A table for any need can be implemented, to store any useful variables.
The aperture table provides other functions with any aperture information they
might need. For the end-user, the information stored in tables can be sent to
the screen or written to a file. Table 3.1 shows the first three parameters as
the user receives it, while Table 3.2 shows an example of output directly to the
screen. For a full version of a table printed to file, see Appendix D.2.

Table 3.1: An example of output to file; apertures computed in-
side of an MB magnet. The number of parameters to be written
can be specified by the user in the input script.

@ NAME %08s "APERTURE"

@ TYPE %08s "APERTURE"

@ TITLE %07s "LHC inj"

@ ORIGIN %16s "MAD-X 2.10 Linux"

@ DATE %08s "18/06/04"

@ TIME %08s "14.39.28"

* NAME N1 APERTYPE

$ %s %le %s
"MBRC.4L2.B1" 21.80695002 "RECTELLIPSE"
"MBRC.4L2.B1" 22.00372148 "RECTELLIPSE"
"MBRC.4L2.B1" 23.30133439 "RECTELLIPSE"
"MBRC.4L2.B1" 23.43916607 "RECTELLIPSE"

..etc......etc....etc......

Table 3.2: An example of output to screen while the program is
running; a summary of Twiss functions.

++++++ table: summ

length orbitbh alfa gammatr
26658.8832 -0 0 0
ql dql betxmax dxmax
64.27999981 0 595.1194205 2.860329515
dxrms xcomax xcorms q2
1.4032533 0 0 59.31000026
dq2 betymax dymax dyrms
0 609.5258812 0 0

ycomax ycorms deltap

0 0 0

Chapter 4

MAD-X practical example

A demonstration on how MAD-X can be used. First some calculations of neces-
sary magnet parameters, then an example of input script files and results after
running MAD-X.

4.1 Theory

One use of MAD is the construction of a completely new accelerator. As an
example of this, and to demonstrate some theory in practice, here is presented
the first design steps. The ring is loosely based on the Proton Synchrotron (PS)
ring at CERN. As a link in the injector chain to the LHC, the ring’s task is to
increase the proton momentum from 1.4 to 25 GeV/c.

THE LHC HADRCN INJECTOR COMPLEX

P

3 ,\
50 MeV = ION
/5525 ACCUMULATOR

A g
LNACS 4z Wevin

Figure 4.1: The LHC injector chain. All the accelerators have
a limited momentum working range, so acceleration is done in
several steps. CERN boasts a number of accelerator machines.

16

CHAPTER 4. MAD-X PRACTICAL EXAMPLE 17

We use these parameters:
Circumference: 800 m.
Dipole length: 9 m.
Quadrupole length: 1 m.

The PS ring is one of the finest working antiquities in the world, constructed
in 1959 with water cooled magnets. Maximum magnetic field: 1.5 T. The actual
bending strength is expressed with an angle .

We start with the bending magnets. To form a complete ring, >"'_ a, = 27
must be true for a number of n bending magnets as shown in Figure 4.2.

((r__9m. S

\/

Figure 4.2: Lengths and angle of a bending magnet.

A variant of Equation 2.1 gives the radius of the mean trajectory:

B oplEEl o osEE 503(m]
P=B T c 109 B[I] ¢ -10-9-151] 70
The angle for each dipole is:
9[m] 9[m]
T T, T 55.593[m] [rad]

which means that at least

2 2

—=———=38811l~w
a 0.162[rad] 588 39

bending magnets are needed. To make the lattice simpler, we settle for 40
magnets. This allows to use two magnets per cell, and have a cell length of 40
meters. The total number of cells is 800/40=20. A regular FODO structure is
chosen for the lattice, with equal spacing between the elements.

Another requirement for the PS ring is to keep the emittance beneath a
certain maximum, to ensure proper beam quality for the experiments: €4, =
3 -1075[m]. With a circular beam pipe with radius 8 - 1072[m] and a beta
beating factor of k3 = v/1.15, we decide to allow a maximum beam envelope
of Xynaz = 2-1072[m] in the focusing quadrupoles. Equation 2.3 gives the
corresponding maximum beta value:

(Xomaz)? 1 (2-1072[m))? 1

A _ L : — 100.82
Par ks P V115 3-10-5[m] 00.82{m]

CHAPTER 4. MAD-X PRACTICAL EXAMPLE 18

QF mB QD MB

0 5 10 15 20 25 30 35 40

Figure 4.3: The lattice structured as FODO cells.

The expression for phase advance per half cell is:

L
sin(¢/2) = ﬁ

where L/ is the length and f; /5 the focal length of a half cell. The expression
for the maximum beta function is:
5 1+ sin(¢/2) 1+ sin(¢/2)
B=hfyp ——5 = Lij2- =
cos(¢/2) sin(¢/2) - cos(¢/2)
Solving this w.r.t. ¢ gives ¢ = 30.30. The necessary focal length is now given
by:

(4.1)

fi/2 Ly 40/2
=1 = = = 38.264 4.2
! 2 sin(¢/2) -2 sin(30.30/2) - 2 (42)
The needed quadrupole strength is:
1 1
k1= =0.026 (4.3)

Louad- f 138264

Equations 4.1, 4.2 and 4.3 are taken from [6].

4.2 Practice

All needed parameters are then written in a script file as presented in Chap-
ter 3.2, along with the lattice and beam parameters:

circum = 800;
ncell = 20;
lcell = circum/ncell;

//define bending magnets
Imb = 9;
mb: multipole, lrad = dummy, 1 = 1lmb, knl = 2%pi/(2*ncell);

//define quadrupoles
1g = 1;

CHAPTER 4. MAD-X PRACTICAL EXAMPLE 19

kqf = 0.026;
kqd = -0.026;
qf: quadrupole, 1 = 1qg, k1 = kqf;
qd: quadrupole, 1 = 1q, k1 = kqd;

//sequence
PSex: sequence, refer = centre, 1 = circum;
start_machine: marker, at = 0;

n = 0;

while (n < ncell)
{

qf: gqf, at = nxlcell + 1q/2 + 0;

mb: mb, at = nxlcell + 1q/2 + 10;
qd: qd, at = nxlcell + 1q/2 + 20;
mb: mb, at = n*lcell + 1q/2 + 30;
n = nt+l;

}

end_machine: marker, at = circum;
endsequence;

beam, particle = proton, sequence = PSex, energy = 25;
use, sequence = PSex;

select, flag = twiss, column = name, s, X, y, betx, bety, dx, dy;
twiss, centre, file = PSextwissl.out;
setplot, post = 2;
plot, haxis = s, vaxisl = betx, bety, file = PSex,
colour = 100, range = qf[1]/qf[2];

stop;

The output produced is a plot of beta functions in the first cell (Figure 4.4, and
the file psextwissl.out (Appendix D.2) containing chosen optic parameters. For
details, see the MAD-X User Guide [5].

CHAPTER 4. MAD-X PRACTICAL EXAMPLE 20

0 | : I [
105, Psex MAD-X 2.11 06/08/04 16.53.27

100. -
95. -
90. -
85. -
80. -

B (m). B (m)

75, 1
70. -
65. -

60,

0.0 5. 10. 15 20. 25 30. 35 40. 45.
Momentum offset = 0.00 %

s{m)

Figure 4.4: The betatronic functions. The magnets are symboli-
cally plotted along the top. Our results are close to the demand
of for ~ 100. Our lattice can be tweaked to further reduce
the beta values, and there is room to add other elements and
equipment.

Chapter 5
Beam pipe

First a presentation of the physical device containing the beam, then we look
into how MAD-X treats different kinds of pipes.

5.1 Hardware

To keep perfect control of the particles making a beam, it is necessary to avoid
them to form too large oscillations. A vacuum as low as possible is needed to
minimize particle interaction along the ring, and especially to avoid background
noise in the experimental areas. The device which contains the vacuum is the
physical limitation for the size of the beam.

Figure 5.1: From the beam’s point of view: A quadrupole (black
and blue), a sextupole (black and white) and a dipole (flat and
grey). The beam pipe is not yet mounted, but will run straight
through the middle. [7]

This device, the beam pipe, surrounds the beam through the magnets, as

those in Figure 5.1. Another important term is beam screen, with which is meant
the area of a vertical slice in the beam pipe. (Figure 5.2). Surprisingly small for

21

CHAPTER 5. BEAM PIPE 22

many, the beam screen in the LHC is never larger than 45mm in any direction
in the superconducting parts of the ring, and 80mm in the warm, straight parts
without magnetic fields. The beam screen size is a compromise between which
size the halo inside can be squeezed to in order to fit inside it, the difficulties
of creating a vacuum in a bigger volume (In the LHC, the beam pipe is 27km
long and although it is divided in several separate vacuum chambers, a slight
increase in beamscreen diameter amounts to a huge addition in the total volume
of magnets), and the economical aspects of building, cooling and operating a
bigger machine and magnets. Usually, one wants as much space for the beam as
possible to avoid too many particles hitting the walls, and may therefore change
the beam screen shape and size. For instance, inside a defocusing quadrupole
the beam is large in the vertical direction, and the beam screen may be rotated
accordingly.

Figure 5.2: A sliced beam pipe from the LHC, with a rectellipse-
like beam screen . Along the straight parts on top and bottom
there are cooling pipes with liquid helium too ensure that the
magnets nearby are not heated with the energy absorbed by the

pipe. [§]

5.2 Physical aperture shapes

A range of different apertypes is necessary to describe the space available to the
beam as precisely as possible in all situations. MAD-X is currently operating
with six basic types of beam screens, see Table 5.1. This adds to MAD-X’
versatility. It can be put to proper use for designing and simulating a variety of
accelerators. Which apertype to be used in calculations is read for each element
definition as the halo travels along the accelerator. The function build_pipe ()
reads and adjusts the parameters accordingly for numeric treatment.

In order to make a polygonal approximation of the beam screen, it is nec-
essary to first know its exact shape. Each element in an accelerator must be
assigned one of the aperture types in Table 5.1. This is done in the sequence
file read by MAD-X while processing.

CHAPTER 5. BEAM PIPE 23

Table 5.1: Apertypes supported by MAD-X [?].

APERTYPE # parms. | Meaning of parms.

CIRCLE 1 radius

ELLIPSE 2 horizontal half axis, vertical half axis
RECTANGLE 2 half width, half height
3

LHCSCREEN half width, half heigth (of rect.), radius
(of circle)

RECTELLIPSE 4 half width, half heigth (of rect.), hor-
izontal half axis, vertical half axis (of
ell.)

RACETRACK 3 radius, horizontal shift, vertical shift

The LHC-screen and rectellipse definitions are the intersection of two of the
other geometrical shapes, either circle and rectangle or ellipse and rectangle.
The rectangle cuts the other shape, and for a point to be considered as inside
the aperture, it must be inside both the rectangle and the circle/ellipse. Figures
5.3 to 5.8 shows the different beam screen descriptions.

We recognize that all existing aperture types, apart from the racetrack, can
be considered as special cases of the rectellipse shape. Only the parameters
need to be adjusted, and tables 5.2 to 5.7 explains for each apertype which
parameter is read and how the others are adjusted. The adjustments are done
in the function build_pipe, see Appendix A.3.5.

apl = half width rectangle
ap2 = half height rectangle
ap3 = half horizontal axis ellipse (or radius if circle)

ap4 = half vertical axis ellipse

5.2.1 Circle

Table 5.2: Parameter treatment for circle.

apl ap2 | ap3 | ap4
=ap3 | =ap3 | read | =ap3

A circle (Figure 5.3) is a common description of geometrical aperture. Many
beam screens may be approximated by a circle without making too large errors.

5.2.2 Ellipse

The elliptical description (Figure 5.4) may be used i.e. when the beam screen is
wider than it is high, but not cut in the vertical direction like the LHCscreen
or rectellipse descriptions.

CHAPTER 5. BEAM PIPE

Figure 5.3: Circular beam pipe description.

Table 5.3: Parameter treatment for ellipse.

apl ap2 | ap3 | ap4
—ap3 | —ap4 | read | read
y

Figure 5.4: Elliptical beam pipe description.

Table 5.4: Parameter treatment for rectangle.

apl

ap2

ap3

ap4

read

read | =y/apl? + ap2?

:\/ap12 + ap2?

5.2.3 Rectangle

24

The rectangle (Figure 5.5) is another approach of a beam screen that is wider
than it is tall.

CHAPTER 5. BEAM PIPE 25

ap2

Figure 5.5: Rectangular beam pipe description.

5.2.4 LHCscreen

Table 5.5: Parameter treatment for LHCscreen.

apl | ap2 | ap3 | ap4
read | read | read | =ap3

apl

apZ2

Figure 5.6: The LHCscreen. Beam pipe description for some
LHC magnets. Not widely used elsewhere.

The LHCscreen (Figure 5.6) is a circle cut in vertical and/or horizontal
directions, and is so a subcase of the rectellipse, see below. The LHCscreen
was meant to be the main LHC apertype, and most elements are defined in the
MAD-X LHC sequence file with parameters corresponding to a LHCscreen.

5.2.5 Rectellipse

Mechanical properties of some bending magnets made necessary an aperture
description somewhat different than LHCscreen. All elements in the MAD-X
LHC sequence file is at the time of writing defined with “rectellipse” apertype

CHAPTER 5. BEAM PIPE 26

Table 5.6: Parameter treatment for rectellipse.

apl | ap2 | ap3 | ap4
read | read | read | read

apl 4
————

. ap4 i
ap2 / ap3

Figure 5.7: The rectellipse. Currently a common beam pipe
description in the LHC.

(Figure 5.7). Most of them had their aperture parameters defined when the
LHCscreen was used and are therefore simply translated by adding a parameter.
They still have a circle as the basic shape.

5.2.6 Racetrack

Table 5.7: Parameter treatment for racetrack.

apl ap2 ap3 ap4
xshift | yshift | radius | not used

A so called “racetrack” (Figure 5.8) is the latest addition to the MAD-X
apertype family. Some beam screens in the LHC will have this shape, but until
now an approximation has been made by using the rectellipse apertype. The
racetrack beam screen may be chosen whenever a large aperture is needed in
the 45° azimuthal area.

5.3 Rectellipse-based beam screen polygons

For all apertypes the make_rectellipse function is called to build the poly-
gon. This function retrieves addresses with the adjusted aperture parameters,
two arrays to store x and y coordinates and an address to store the number of
coordinate pairs computed for the first quadrant of the finished shape.
int make_rectellipse(doublex apl, double* ap2, doublex* ap3,
double* ap4, int* quarterlength, double tableX[], double tableY[])

CHAPTER 5. BEAM PIPE 27

apl

Figure 5.8: Racetrack, a "new” beam pipe description. 45° az-
imuthal area in grey.

The first quadrant coordinates are later mirrored across the x- and y-axes to
complete the polygon.

The parametric representation for a point C at the outline of an ellipse is
given by

(acosp,bsin), or in our case (ap3 cos ¢, apd sin)

We need only to find a certain number of coordinates on the arc that is
actually inside the rectangle. Figure 5.9 shows a common example of the rectel-
lipse. The ellipse is cut by the rectangle in the vertical direction, but not in
the horizontal direction (apl=ap3). We want to start our algorithm with point

Za=0

Figure 5.9: A common example of rectellipse. The number of
apexes for the polygon is set to 20 in the source code, which gives
a close approximation to the geometrical values for all realistic
arc lengths.

D (angle @ = 0) and end at point E (angle §). At the crossing point D the x
value is known and we need to calculate the y value. Vice versa at point E. The
equation for an ellipse is used for this:

CHAPTER 5. BEAM PIPE 28

2 2
2 v
a? b2 ’
or in our case
2 2
4+ Y
(ap3)* ~ (ap4)?
So for
2
y=ap2; x=ap3-sqrt(l — %),
apd
2
g="1_ tanfl(ﬂ)
2 T
and for
apl
x=apl; y=apd-sqrt(l — —),
ap3
1, Y
a = tan (=
()

An arbitrarily chosen number of x and y coordinates from point D and
upwards along the arc to point E are then put into the respective tables, and
the number of coordinate pairs are saved as “quarterlength”. This function is
also used for finding the beam halo coordinates, since the beam halo is simply
a circle or ellipse cut in the x and y directions. More on that in Chapter 6.4.

The tables with coordinates for the first quadrant are then sent to the func-
tion £i1l_polygon_quadrants, which receives a table and its length. The first-
quadrant tables are there mirrored across the x and y axes. Extra precaution is
taken to do this in the correct order. If PipeX][5] is the first point in the second
quadrant, it will have the same coordinate (but different sign for x) as PipeX[4],
not PipeX][0]. For a visual example, see chapter 6.4, Fig 6.7 and 6.8. The simple
method of mirroring is explained and presented in the source code. Finally, the
length of the halo tables is saved for use in other functions.

5.4 Racetrack beam screen polygon

In the case of the racetrack apertype, the tables built are corresponding to the
first quadrant of a circular beam screen, and needs a displacement according to
the apl (= horizontal shift) and ap2 (= vertical shift) values. To do this, the
function call is embedded in a loop. Note how the value of ap3, the radius, is
sent as the three first parameters to make the initial shape:

CHAPTER 5. BEAM PIPE 29

else if (!strcasecmp(apertype,"racetrack"))

{
xapl=get_aperture(current_node, "varl"); /*half width rect*/
xap2=get_aperture(current_node, "var2"); /*half height rectx*/
*xap3=get_aperture(current_node, "var3"); /*radius circlex*/
*ap4 = *ap3;
err=make_rectellipse(ap3, ap3, ap3, ap4,
&quarterlength, PipeX, PipeY);
if (terr)
{
/*displaces the quartercirclex*/
for (i=0;i<=quarterlength;i++)
{
PipeX[i] += (*apl);
PipeY[i] += (*ap2);
}
fill_polygon_quadrants(PipeX, PipeY, quarterlength,
pipelength) ;
}
}

As shown in Figure 5.10 the result is a PipeX and PipeY table that contain
coordinates for the first quadrant. The full shape is made with the function
fill_polygon_quadrant, as shown in the source code excerpt.

¥

ap3 = | o

j} yshift, ap2

ﬁ_.) - = X

p 3_ / xshift, apl

Figure 5.10: The shape from a circular rectellipse calculation is
displaced to form a racetrack-like beam screen polygon.

The future may bring even more elaborate beam screens in new accelerators.
Support for these should be fairly easy to implement by adding a section for
reading parameters in the build_pipe function, and a standalone function to
make the tables with apex coordinates.

Chapter 6

Beam halo

We finalize our understanding of what a particle beam is. Then we look into
problems arising from loss of particles, and how this can be avoided by cleaning
the halo with collimators.

6.1 Normalized coordinate system

Accelerated bunches of particles is referred to as a particle beam, or simply
beam. The particles in the beam are always oscillating around their respective
central trajectories, but in average the beam has a centre of mass which serves
as the reference point for describing its volume. The distribution of particles
is usually considered to be gaussian around this centre, and a point in the
transverse space is denoted rather with coordinates normalized to the particle
density distribution of the beam than with x and y:

z Y
= M., = 5
kgoy Y kgoy

[9] (6.1)

Ny

where

Ozy =\ Boy€ay

is the r. m. s. beam size of the density distribution. The emittance € is a constant
value, but 3 changes along the ring. kg is an uncertainty factor of the 3 value.
(See chapter 2). The total distance from the beam centre is denoted as:

Ny = 4/Ng? + ny2

6.2 Beam loss problems

For several reasons we want to remove particles at large n, values from the
beam:

1. To protect the beam pipe and machinery in the accelerator from physical
damages.

30

CHAPTER 6. BEAM HALO 31

Figure 6.1: The density of particles in the beam has a gaussian
distribution. The figure shows how normalized coordinates are
used to describe a point in the transverse plane relative to the
beam centre.

At high energy levels, a stream of particles hitting the beam pipe wall can
cause severe damages. Reparations are both expensive and time consum-
ing, due to the irradiated environment and the necessary level of thor-
oughness. In the LHC, the total energy per beam will be ca. 350 MJ,
enough to melt 500 kg. of copper!

2. To ensure high beam quality for the experiments.

Even at much lower energies than in the LHC, a particle interacting with
the pipe wall can create a shower of other particles, drifting in the pipe.
These particles may act as background noise in the experimental areas.
This also adds to the radiation level in the machinery.

3. In the case of a superconducting environment, to minimize the amount of
energy deposited on the pipe walls.

Superconducting magnets need to be kept at a low temperature, and are
vulnerable to heat energy from the inside. (This also necessitates the
cooling system around the beam pipe, see Figure 5.2). This is probably the
strictest criterion for beam cleaning in the LHC, where the time-integrated
amount of energy deposited in a given length of machinery shall not exceed
the limit which increases the temperature of the coil above the critical
temperature T, which is the temperature limitations arising from the
efficiency of the cooling system. If the temperature in a superconducting
magnet rises above T, the magnet becomes resistive and the temperature
will rise quickly due to the large current that is now flowing through a

CHAPTER 6. BEAM HALO 32

resistive material. A magnet may be totally destroyed by this “quench”
or “burn-out” in the absence of adequate protection. Several hours will be
needed to restore working conditions even with adequate protection.

Particles with an oscillation amplitude larger than the dynamical aperture
(see Chapter 2) is considered to be part of what is called the beam halo. An
accelerator is designed to easily fit the dynamic aperture inside the geometrical
one, so the three main reasons above concerns the particles constituting the
beam halo. One of the main reasons for our aperture computations is that
we want to keep track of this halo, to investigate to which degree our goals of
protecting the machine is fulfilled. Our method of doing this is by making a
polygon approximation of the halo outline, and comparing this outline with the
geometrical aperture along the ring. In order to do this, we must study what
gives shape to the halo.

6.3 Collimation

The removal of particles must be ensured at all times, since the halo is con-
stantly fed. This feeding can e. g. be due to errors in the magnetic field causing
a miskick of particles, particle-particle interactions in the beam or interactions
with particles in the residual gas (in a non-perfect vacuum). The removal is
obtained by inserting physical obstacles in the beam pipe at convenient spots
(Straight sections, before experiment regions, etc.). The number, positioning
and material of these obstacles, the collimators, is carefully decided in accor-
dance with the wanted performance criteria. In the LHC, these will be 20 and
100 cm long graphite blocks, arranged to cut the halo at approximately n, = 6
(Figure 6.2).

Figure 6.2: Primary collimators shown for the first quadrant.
The beam halo is cleaned at n,, = 6 at best.

The cleaning efficiency of a collimator is never 100%, so after passing the
primary collimator there are still a fraction of particles left in the halo area.
This is now referred to as the secondary halo. This halo is constituted either by

CHAPTER 6. BEAM HALO 33

particles that escaped the primary collimator by passing right through it (mul-
tiple coulomb scattering), or by new particles created from particle interaction
in the collimators (Figure 6.3).

1y

6+

e

- -
8 & e @ =

d o @ O /

Mg /_// e @& © _‘rw-{" .
.\ o — e .
L o D O @ © e
2 & & &

Figure 6.3: Multiple coulomb scattering (1) and direct particle
interaction (2).

The same phenomena occurs in eventual secondary or tertiary collimators,
so there a tertiary or quartiary halo is also created. The density of parti-
cles decreases, so depending on the objective all halos might be interesting to
track around the accelerator. The halo polygonization routine implemented in
MAD-X is based on the LHC collimation system. This system uses two sets of
collimators, a primary and a secondary, where the primary ones are shaped as
in Figure 6.2. The secondary collimators are positioned at n, = 7. The halo
produced by this system has been carefully studied (Figure 6.4), and the shape
and parameters chosen to describe the halos is shown in Figure 6.5.

6.4 Halo polygon

When a parameterized halo is given, coordinates of a polygon must be calculated
for numerous purposes. The function make_rectellipse receives the values
r, h and v for the halo, and fills the tables HaloX[] and HaloY[] with the
coordinates.

We do not add coordinates along the straight sections. A large number
of coordinate pairs along the arc are not necessary, but it is important that
two of the pairs are placed respectively at the start and at the end of the arc.
(Figure 6.6).

The two angles a and 6 are calculated in order to know the start and end of
the arc, and coordinates in-between are calculated at even intervals and added
to the tables. The make_rectellipse function uses the ellipse equation is basis
for this:

CHAPTER 6. BEAM HALO 34

|1 —

=l T
T
i

AV R R L L T

g g
< <
4 -
2+
0
0 2 4 6 B 10
A lod Alo,]

Figure 6.4: Simulated secondary and tertiary halo after primary
and secondary collimators in one of the LHC collimation regions.
[10]

In ‘

y

I
n, r

Figure 6.5: First quadrant of primary and secondary halo de-
scriptions used in the LHC.

or in this case

So for

CHAPTER 6. BEAM HALO 35

Figure 6.6: The halo is built based on parameters given in an
external file.

and for

x = h; yzr-sqrt(l—%),

—1,Y
o = tan (h)

Utilising the symmetry of the beam halo, it is not necessary to calculate
more than the first quadrant in this manner. Coordinates in the other quadrants
will have the same values but different signs, conversion is done with functions
fill_polygon_quadrants and adj_coord_quadrant, which fill the quadrants
and adjust the signs according to the angle,.

The resulting polygon, when drawing straight lines from point 0 — point
1, point 1 — point 2 etc. is what the aperture_calc function works with
when comparing to a beam pipe polygon. Possible miscalculations due to the
difference between the straight-lined polygons and the actual shapes is negligi-
ble compared to error margins included in the displacement of the halo. (See
chapter 7).

The user also has the possibility to define a halo polygon with a different
basic shape by giving as a parameter in the MAD-X aperture command a file
containing apex coordinates for the entire polygon. It is, however, difficult to
foresee what type of halo cannot be described adequately with the rectellipse
approximation, since this gives the opportunity of both circular halos, and halos
stretched in the x or y direction.

6.5 Halo oscillations

In the case of LHC, the halo is described as a superposition of a circle and a
square, see Figure 6.5. The parameters describing the halo are given by the user
in values normalized to beam size. As a standard, MAD-X uses SI-units, so we

CHAPTER 6. BEAM HALO 36

"'/-’ - V R “"-\-\.._
LEX. EY] N EX EY]
/ e ELEY
/’*I Quarterlength= 4 g
¢ PN
/ 7 :_
wox oy | /S 1
s o /DX DY]
/ A
ll.l'l \
[II|
X
! |
1)
1)
\ /
% 10 Flall lengrh = 19
r.ox -prk /| [oX. -DY]
Y 1 ”/
\\ 1 1”7
7 Jr/
S 5
S ¥
[-EX -EY] ™~ " [EX -EY]
T .
i 5T

Figure 6.7: The coordinate tables for the first quadrant are
expanded by copying coordinates and changing signs according

to the new quadrant.

Figure 6.8: Final halo polygon. This is a very close approxima-
tion to the theoretical halo as given in the parameter file.

need to convert the halo polygon coordinates. The convertion is done by the

function adj_halo_si:

T =ngkg\/ Bu€x Yy =nyks\/Byey (6.2)

As 3 changes, the shape of the halo polygon should change accordingly, as
seen in Figure 6.9. The halo polygon is therefore reconstructed, using equa-

tion 6.2, for each change in the 3, , values:

CHAPTER 6. BEAM HALO 37

for (i=0;i<=halolength;i++)

{
HaloXsi[i]=HaloX[i]*bbeat*sqrt (ex*betx) ;
HaloYsi[i]=HaloY[i]*bbeat*sqrt (ey*bety) ;
}
0.02 T T T T T 1
A
0.015 -
| C _
0.01 D
o 0.005 | : -
=
e of i
> .0.005 | i -
-0.01 -
-0.015 u
-0.02]]]]]]]
-0.6P2.015.00.0050 0.00.00.018.02
X-value

Figure 6.9: Halo shape changes from A=centre of defocusing
quadrupole to H=centre of focusing quadrupole, according to
the beta function.

Internally, MAD-X operates with four tables, HaloX[] and HaloY[] for the
initial halo constructed from the given paramters r, h and v, and HaloXsil[]
and HaloYsi[] for the coordinates adjusted to SI-units.

Chapter 7

Error tolerance and special
cases

An introduction to different sources of error, and how they are taken into account
by the aperture module.

7.1 Total displacement

The center of the beam will seldom be exactly superimposed on the center of the
beam pipe. This is due to momentum dispersion arising from the optics of the
machine, and to a parasitic dispersion component from magnetic field errors and
small rotations of magnets. In addition to this, there is an uncertainty in the
alignment and physical shape of the beam pipe, and an uncertainty about where
the central trajectory of the beam is located at a particular energy level. Also,
sometimes the beam is displaced on purpose, e.g. at injection or in experimental
regions. All these factors must be included in the aperture calculations, to have
a result which is on the safe side as long as the maximum tolerance levels are
respected. All these errors are 2-dimensional, they can contribute in both x
and y directions. In practice, the errors are therefore summed up, and the halo
centre is radially displaced with the sum A, ,(s) for an arbitrary number of
angles € [0, 2x](Figure 7.1).

Aqy(s) = CORGF + 6120 (5) + kg - Day(s) - 8 + [d5D(s) + dyf (s) + d3**>(s)]
(7.1)

In the following subchapters each constitutional part in equation 7.1 is elab-
orated, along with its relation to MAD-X.

7.2 Closed orbit errors, Cngyﬂk

The CO is the design orbit of the “perfect particle” which has energy p = pg
and r = 2’ = y = v’ = 0. Particles with an non-zero initial value will perform
betatron oscillations around this orbit. In a perfect machine, the perfect particle
would pass through the center of all multipole magnets, not feeling any magnetic

38

CHAPTER 7. ERROR TOLERANCE AND SPECIAL CASES 39

Axi1

Figure 7.1: The displacement A, ,(s) is computed for each point
.

force except the main bending field in the dipoles. In reality, the closed orbit
is always shifted and/or complicated by irregularities in the magnetic fields of
the magnets. (E.g superconducting magnets will experience residual currents.
When shutting down the magnetic field, the current will continue to flow because
of the low resistivity, creating a weaker field. When switching the power back
on, it will take some time before the current and the residual current stabilizes,
meanwhile the field is unstable; B # 0). Figure 7.2 shows the extra kick received
by particles performing oscillations around a closed orbit which misses the centre
of a quadrupole. These particles experience the force AF in addition to the
normal focusing force F. This gives the closed orbit a kick, creating oscillation
everywhere downstream.

An uncertainty value for the closed orbit trajectory should be defined before
calculating aperture. For the LHC, COP** = 4mm. This value should be
given as a parameter in the aperture command. The parameter given is a radial
distance from origin, and is decomposed in an x and y fraction for each angle
an (Figure 7.1).

7.3 Mechanical and alignment tolerances, 6;015(3)

Each element along a beam line is constructed and mounted in accordance with
strict rules of precision. Magnet design and measuring techniques are carried
out as carefully as possible. Still, the perfect machine has yet to exist. We
distinguish two separate possibilities of error:

1. Mechanical errors in the magnet body.
2. Alignment errors in the mounting on the beam line.

Maximum tolerance for each error in each magnet is set according to the
need of precision under operation. The normal description of tolerance is based
on the alignment errors, and shown as a circle in the x,y plane. Mechanical

CHAPTER 7. ERROR TOLERANCE AND SPECIAL CASES 40

AF

Figure 7.2: The magnetic field in a quadrupole is linearly chang-
ing and proportional to the distance from origin (F' = k - x).
The dotted line shows the force AF a particle with distance x
to origin experiences in a quadrupole. If the distance x is due to
closed orbit or tolerance errors, the AF is considered a parasitic
kick since it adds to the total bending strength of the machine.

errors in the magnet body are shown in tests to have even distribution around
the magnet centre, so to include these the circle radius is enlarged. An exeption
from this is the new LHC bending magnets. The LHC is the first ring at CERN
where the bending dipole magnets are so long that they are not built with a
straight body. Each dipole has a sagitta bend of 9 mm in the horizontal plane.
This tends to enlarge the size of mechanical errors in this plane, see Figure 7.3.
A circle is therefore no longer the best geometrical description of the maximum
error around the magnet. A new description of maximum tolerance was for this
reason recently defined in the LHC optics group. The beam aperture was kept,
while making the tolerance narrower vertically and larger horizontally.

7.3.1 Racetrack algorithm

The new description, called racetrack (Figure 7.4), is made up of a rectangle
and two semicircles. To describe a circle one can set g = s = 0, so this shape
can also describe a usual circular tolerance definition. The function retrieves
the g, s, 7 and angle values, and for each angle it calculates the distance from
origin to the racetrack outline. The distance is for each angle returned as an
x-parameter and a y-parameter.

To simplify the algorithm, all calculations are carried out as if they were in
the first quadrant and are later adjusted to describe the full revolution. De-
scribing the outline with one set of equations would be complicated, some sort
of step-function would be needed. It is easier to divide the shape in three parts;
vertical straight - arc - horizontal straight. A different set of equations is used
for each part, determined by comparing angle ¢ with angles oy and a;, see Fig-
ure 7.5. The algorithm is made bearing in mind that depending on the values
for g and s, there might not be a vertical or horizontal straight part.

CHAPTER 7. ERROR TOLERANCE AND SPECIAL CASES 41

I T T I T T T T T
5 x-z wp08 side deg + 5 x-z wp08 middle deg ¥
1F - 1F
T E
EOF - EOF
N N
-1 - 1+
2 - 2+
| | | 1 | 1 1 1 1 1
-2 -1 0 1 2 -2 -1 0 1 2
X [mm] X [mm]

Figure 7.3: Mechanical and alignment error plots of sample
bending magnets for the LHC. The maximum deviation in ev-
ery magnet along their lengths is displayed in an horizontal(x)-
vertical(z) plane. Here compared to the racetrack that gives the
maximum allowed error.

y_d).fff‘ (5] {

xshift (g

Figure 7.4: The xshift, yshift and radial parameters of the race-
track.

Precautions must be made when using trigonometric functions. The vector
approach used in functions check_if_inside and build_newhalo can not be
taken, since we now know the angle and want to find the vectors, not vice versa.
For some angles, non-real values will be returned, namely “inf” or “nan” (not a
number). In combination with the always present issue of dividing by zero, we
need to think through wich values are possible to occur for each variable storing
a radian value. Table 7.1 gives a list of dangerous radian values, computed with
UNIX’ standard GCC compiler, version 2.96.

“inf” has the advantage of being considered by the compiler to be bigger than
any number. An “inf” value can therefore be compared successfully with other
numeric variables using operands > or <. “nan” can not be used reasonably in
any arithmetic operation.

CHAPTER 7. ERROR TOLERANCE AND SPECIAL CASES 42

Table 7.1: Problematic radian values.

¢ | sing | cose |taned [sin ' | cos 1o | tan~ 1o
0.00 | 0.00 | 1.00 | 0.00 0.00 1.57 0.00

1.57 | 1.00 | 0.00 inf nan nan 1.00
3.14 | 0.00 | -1.00 | -0.00 nan nan 1.26
4.71 | -1.00 | -0.00 inf nan nan 1.36
6.28 | -0.00 | 1.00 | -0.00 nan nan 1.41

In the first quadrant, we only have the two angle values ¢ = 0.00 and ¢ = 7/2
to worry about, in addition to taking care not to divide by zero. The angles aq
and «; dividing the quadrant in three parts is always calculated:

ao = tan""(s/(g + 1))

ar =tan"'((r +s)/g)

g

Figure 7.5: The racetrack outline is divided into three parts;
vertical part, arched part and horizontal part.

If there is no xshift, oy = tan~!(inf), which is 1.57 rad, or 90.0 degrees.
With no yshift, ag = tan=1(0.00), or 0.00 degrees. These results shows that the
algorithm is able to treat circle outlines also.

The equations for calculating distances up to «ag:

r=gqg-+r;

y=g+r-tan(¢)

CHAPTER 7. ERROR TOLERANCE AND SPECIAL CASES 43

If ¢ = 0,tan(¢) = 0, and the y parameter is correct.

Distances along the arc: We know length 7, and can find angle « and length
g (Figure 7.6). Angle « is the absolute value of the difference between the angle
we want to calculate the distance to the outline for, and the angle to the centre
of the radial part of the figure, namely as.

ap = tan"'(s/g)
a= ¢ — as

q= /g2 + 52
This is used to find the length of line I:

r/sina = q/siny
v =sin"!(g/r - sina)
O=m—(a+7)

[/sinf =r/sina=1=r-sinf/sinc
And, finally, the x and y coordinates:

xr=1-cos¢

y=1-sin¢

Obviously, we would have a division-by-zero problem with the former ap-
proach if sin(a)=0, which is to say, in our case, that «=0. But then there
would be no triangle, but a straight line. In this case, we know that line [
stretches from origin to the outline through the centre of the radial part:

x=(r+gq)- coso

y=(r+q)-sing

7.4 Dispersion, ks - D, ,(s) -9,

Here, kg is a parameter describing the beta beating. This is a correction factor
of the § value, taking into account worst-case deviations from the theoretical
value. Since the amplitude of the halo oscillations (chapter 6.5) are proportional
to v/, aperture calculations must be done with kg-corrected values. The kg
is read from the input file of parameters, and is for the LHC assumed to be
maximum 1.1.

CHAPTER 7. ERROR TOLERANCE AND SPECIAL CASES 44

Y A
¥
Yy
ar:
q
§
A D
az .
g X
Pl

Figure 7.6: First quadrant of a racetrack. The sine rule is used
to calculate distances from origo to the arched part of the out-
line.

The parameter D, ,(s) is the dispersion parameter presented in chapter 2.
Wanting to allow for error margins, it is necessary to add a parasitic component
to the “normal” dispersion.

Dy y(s) = Dyly(s) + DRy (s)

Parasitic dispersion is a dispersion origining from coupling effects in quadrupoles.
The coupling effects arise from slight misalignments of the magnet poles, or er-
rors in the magnetic field, causing a particle with a deviation in one plane to also
receive a small parasitic kick in the other plane. As a rule of thumb, ch”é(s) is

proportional to y//3;4(s) for all s. By knowing this proportion for a particular
s, e.g. in a focusing quadrupole, the Dﬁc”;(s) can be found for all s as long as

Ba,y(s) is known. This is used to calculate D2% (s) as a fraction of D7 (s).

D2 (s) _kp-Dqgr
Bx,y(s) \V4 ﬂQF,z ’

where kp is the parameter giving the fraction of parasitic dispersion. For aper-
ture calculation purposes a “worst case” coupling factor kp of 27% is used [9].
Dor, Bor and kp can be given as parameters in the aperture command.
Finally, we have in Equation 7.2 an expression for D2%(s). The D" (s) is
computed by the Twiss module.

D25 (5) = k| 225 g (72)

CHAPTER 7. ERROR TOLERANCE AND SPECIAL CASES 45

Total dispersion is calculated for only the first quadrant, and in addition
the momentum distribution is symmetric around dp = 0, so to correctly add
the dispersion to the displacement of the beam centre, the absolute value of
dispersion must be given sign corresponding to the angle of calculation.

-}’

Rl i

-D= &p D=op

Figure 7.7: Displacement due to dispersion and dp. The worst-
case displacement for each quadrant is shown as a vector arrow
and decomposed in x- and y-vectors.

Table 7.2 is an outprint from MAD-X. The dispersions for x and y planes
change sign according to which quadrant the computation angle is in.

Table 7.2: Displacement adjusted to worst-case for quadrant.

angle dispxadj | dispyadj
0.000000 | 2.588831 | 0.251759
0.392699 | 2.588831 | 0.251759
0.785398 | 2.588831 | 0.251759
1.178097 | 2.588831 | 0.251759
1.570796 | -2.588831 | 0.251759
1.963495 | -2.588831 | 0.251759
2.356194 | -2.588831 | 0.251759
2.748894 | -2.588831 | 0.251759
3.141593 | -2.588831 | -0.251759
3.534292 | -2.588831 | -0.251759
3.926991 | -2.588831 | -0.251759
4.319690 | -2.588831 | -0.251759
4.712389 | 2.588831 | -0.251759
5.105088 | 2.588831 | -0.251759
5.497787 | 2.588831 | -0.251759
5.890486 | 2.588831 | -0.251759

CHAPTER 7. ERROR TOLERANCE AND SPECIAL CASES 46

7.5 Purposely made displacements,
[y (s) + dg™*(s) + d3(s)]

Sometimes the beam centre is displaced with regard to the beam pipe centre
of practical reasons. The situations MAD-X must be able to take into account
are at injection, in regions between separation kickers and interaction points of
experiments, and when a magnet is shifted or tilted so its centre does not coin-
cide with the ring axis. All three special cases are represented in the injection
region for beam 2 in the LHC, Figure 7.8. Similar situations occur in many
accelerators.

LHC—b

Q1 Q2 C' D1

\IED’J- WIXE MODRENMEX TCDD 0

‘gﬁmﬁ [E : - ——
lﬁlm . ,.L = H DL, ‘[_jjuﬂ

Figure 7.8: Rightmost is the injection of beam 2. Leftmost is IP8, where the
two beams collide in the LHC-b experiment. [10] [11]

7.5.1 Injection and axis displacements

4.4 434 43K 45K 13K 2

1] NEF.Q0

, X -_— PR
L= 3,843 4.8 ST RIATe
34 19,308 3.4 20.108 FIE] 2471 VA 34 Q.68
EAL) 23,555 7181 BE.B1% 8,567 237132 2.167

Figure 7.9: Enlarged right part of Fig 7.8; Injection region for beam 2.

Figure 7.9 shows the injection system for beam 2, seen from above. In the
MSI section, the injected beam is aligned horizontally with the circulating beam,
and inside the MKI section it is aligned vertically. The MKI’s task is to kick
the injected bunch upwards and into place on the circulation orbit. Two severe
errors may occur here (Figure 7.10).

1. MKI does not kick the injected bunch, so it continues on a straight tra-
jectory crossing the circulation orbit and finally hitting the pipe wall.

CHAPTER 7. ERROR TOLERANCE AND SPECIAL CASES 47

MSI

Tnjecred MEL
beam
Circula (.iug@

beam v CI)

--- o O] .

by

Figure 7.10: Possible errors in MKI. This particular case is
LHC-specific, but similar situations will occur in other accel-
erators/colliders.

2. MKI kicks a circulating bunch out of its orbit.

Both errors possibilities must be studied to avoid the accidents mentioned in
chapter 6.2. This is done by adjusting the kicker strength in the MAD-X se-
quence file. The distance d,(s) to the central orbit (the kicker works only in the
vertical plane) is read from the Twiss output and added to A,.

Another slightly delicate aperture problem arises in the D1 and D2 kicker
magnets. These are the magnets that shifts the two beams into a common beam
pipe (Figure 7.11). The beam trajectory changes direction significantly inside
the magnets, so the aperture is far from constant (Figure 7.12). These problems
will be addressed in the last part of the project, in 2005. The solutions will be
included in the CERN-version of this report.

_m :

TBXMBX TCDD T

I

1 A7E2
. b t

9.45 33845 545

Figure 7.11: Enlarged middle part from Figure 7.8; D1 and D2 kickers.

CHAPTER 7. ERROR TOLERANCE AND SPECIAL CASES 48

D1
X
/
Aﬂ)ﬂm} 1
i
L
/,// o a
axis
—_,_...TWHHH}Q'X » COref
. s
\\\
s
S
g
TR
o

s CObeam 2
g
.
e
S

Figure 7.12: The angle between CO;.cy and C'Opeqm1 makes an
aperture bottleneck.

7.5.2 Separation displacement

In regions just before and after beam colliding, the two beams have one common
beam pipe (Figure 7.13). In these parts, beam positions are as before referenced

MPE (CENTER OF LD BS) 18K £ 3K

Q1 Q2 Q5] | D1

MOXA MQXE WCADEBXMBX TCOD TOI

P8 i
MBS 2

@ . =

' n.7g] (B2l 5.5 1] 5.5 F7I5E. |
i A 18 474 B |4

ek, ol .67 9.45 33,645

.k

-b
IPOLE

Y

EXP.

Figure 7.13: Enlarged left part from Figure 7.8; The quadrupole
triplet to the right of IP8. The two beams share a common beam
pipe.

to the center of the beam pipe, but the beams are displaced so to not interact
directly before reaching the collision point (Figure 7.14). The separation is
contained in the x and y values read from the Twiss output, since MAD-X
automatically takes the common beam pipe into account.

CHAPTER 7. ERROR TOLERANCE AND SPECIAL CASES

MQXA

Q2

MQXB

Q3

MQXA

beam 1

ref.

beam 2

Figure 7.14: Inside the triplet the beam trajectories are guided
by the quadrupoles, separated from the centre with a distance

sep
dser.

49

Chapter 8

Calculation procedure

The beam pipe and beam halo are now both approximated with polygons, and
the coordinates are saved in their respective tables. The halo is shaped according
to optic functions, and displaced w.r.t. the pipe centre according to uncertainty
and tolerance margins. The next step is calculating, for a particular point along
the accelerator, and with the shape and displacement of the halo, the largest
possible halo that will fit inside the pipe.

8.1 Escaping beam halo?

Before the search for the largest possible halo can start, it is convenient to
perform a check whether the centre of the beam halo is still inside the beam pipe.
In the case it is outside, the aperture calculation will give incorrect answers. This
investigation is based on the observation that the sum of angles between a point
and a polygons apexes taken two by two determines whether the point is inside
or outside the polygon. (Presuming the adding of the angles is done in fixed
order with sign). See Figure 8.1.

¥

Figure 8.1: Summing up the angles gives either 0 or 2.

50

CHAPTER 8. CALCULATION PROCEDURE 51

For a polygon of n+1 apexes, Y. ,6; = 2r if the test point is inside the
polygon, or Z?:o 0; = 0if it is outside. To add up the angles with 360° rotation,
we utilize the function atan2(y,x). The regular atan(a) only takes a tangent
as a parameter, and calculates the angle from that. This function can only
return values between 0 — m. The atan2 takes as parameters a sine and a
cosine value, and determines the quadrant of the result from their signs.

sine 14

, + +
cosine

Figure 8.2: The sign of sine and cosine function of a € [0, 27].

To calculate the sine and cosine values with a sign, we use formulas 8.1 and 8.2.

sing = ———=— (8.1)
|al[b]
b b
0S¢ = w (8.2)
|a[b]

The algorithm doing the work is coded in the function check_if_inside().

8.2 “Dented” beam pipes: not simply connex poly-
gons

Methodically, the algorithm for finding the largest possible halo is fairly simple.
The distance from halo centre to the first apex (¢ = 0) in the halo is calculated
(1;), and the equation for a line going through these points is derived. This line
is then compared with all lines making the pipe polygon to find their respective
intersection coordinates. The distance h; between halo centre and intersection
are then divided by [;, to find the maximal ratio of enlargement (Figure 8.3).
This procedure is then repeated for all apexes ¢ in the halo polygon, and the
smallest ratio of all apexes is the maximal enlargement ratio for this halo to
just touch the pipe at this particular longitudinal position.

IFormulas proven in Appendix C

CHAPTER 8. CALCULATION PROCEDURE 52

Beamn pipe

Halo [

Figure 8.3: Largest possible size of halo is determined by %

There is one complication to this solution; polygons which are not simple
connexes. (Geometrical definition of “simply connex™ A figure in which any
two points can be connected by a line segment, with all points on the segment
inside the figure.) Figure 8.4 shows what happens when a beam pipe polygon is
not a simple connex. The halo is expanded in such a way that it is larger than
the external polygon in the area where the latter is dented inwards.

20 I | I 1

T T
ratiohalo
15 | pipe - =
halo ——

20 [N N N A
20 -15-10 -5 0 5 10 15 20

X-value

Figure 8.4: A maximum enlargement of the initial halo polygon
based only on the apexes of the halo polygon.

To make the module able to treat all kinds of polygons, we need to strate-
gically add apexes to the halo polygon wherever the beam pipe polygon might

CHAPTER 8. CALCULATION PROCEDURE 53

have an inward dent. This is done by drawing a line from halo centre to each
apex on the pipe polygon. An apex with its coordinates on the intersection
point line-halo is added to the table of halo polygon apexes. The result is that
the halo polygon has a few “excessive” points on straight sections as shown in
Figure 8.5, but the algorithm used for expansion will now never miss a dent in
the beam pipe.

20 | | |

| | | |
ratiohalo ——
15 pipe - -
halo
10 - added points +
o °[B o e a
= =
$ i oy |
> 5 L . : LW . _
10 F A
15 .
_20 | | | | 1 | |
20 -15-10 -5 0 5 10 15 20
X-value

Figure 8.5: A maximum enlargement where also the apexes of
the beam pipe is taken into account.

8.3 Tool functions

Adding extra apexes to the halo polygon and then comparing it to the pipe
polygon, should bee seen as the two main parts of the calculation method.
Based on the same geometrical technique of drawing and comparison of lines
and points, the algorithm consists mainly of a few short functions. When it
comes to the code, this should help making it easy to read and understand.
The functions doing the work described in this chapter are aperture_calc,
intersection, linepar and online.

8.3.1 Line equations

The basic equation describing a line in a two-dimensional plane is;

y=ar+b (8.3)

CHAPTER 8. CALCULATION PROCEDURE 54

Or defined w.r.t. a point (xo,yo);
y—yo=alr —xp) +b (8.4)

Deducing parameters for a line through two points (x1,y1) and (z2,y2) with
known coordinates is done quickly (see also Appendix A.3.11):

a=(y1 —y2)/(z1 — T2)
b=y1—a-x1=Y2—a- T2

Intersection point coordinates x,, and y,, between two lines are calculated
as:

Ty = (b1 — b2)/(az — a1)

ym:al'xm+b1

Vertical lines

One of the problems we run into when using this approach for intersection point
calculation, is that when two lines are parallel, they have no intersection point.
This is only a problem when a; = as and by = bs, i.e. they are the same line.
The solution is then to set the coordinates of the pipe apex as the intersection
point.

Vertical lines are a weak point for this calculation approach, since the slope a
will be infinity. A small list of checks for vertical lines and corresponding action
is therefore added to the code, see Appendixes A.3.11 and A.3.10. As a general
rule we state that if one of the lines “halo centre - halo apex” or “pipe apex n
- pipe aper n+1" are vertical, then the x-coordinate of the intersection point
defines the vertical line. The y-coordinate is then calculated from inserting the
x-coordinate into the equation for the not-horizontal line. On the rare occasion
that both lines are vertical they will only intersect if they have the same x-value.
The intersection coordinates are then set equal to the coordinates of the start
of the pipe line.

8.3.2 Intersection point verification

We know now the coordinates where the two lines meet. To check if the inter-
section point is on the polygon (i. e. in between the two current apexes) and not
somewhere else along the line, we again use the formula for cosine calculation?;

CA-CB

COS((b) = m (85)

Here C is the intersection point, and A and B the start and end points of the
segment, see Figure 8.6. If C is on the segment, ZACB = «. Else, ZACB = 0,
or cos ZACB = —1 or 1 respectively .

So Equation 8.5 will give either a 1 or a -1, depending on whether (z,,, ym)
is between the two apexes or on one of the sides. In the case that (z,,,ym) is
identical to one of the apexes, it will return 0, and the point is regarded as on
the segment.

2See Appendix C

CHAPTER 8. CALCULATION PROCEDURE 35

Figure 8.6: C is known to be on the line running through A and
B. But is it on the segment AB?

8.4 Summary

Finally, the minimum ratio r = % = |halocentre — pipeapex| / |halocentre —
halo apez| gives the maximum allowed size of the halo at the current longitudinal
position in the machine. The parameters describing the halo at this point may
be multiplied by the ratio r, to give the beam size in ¢ at its maximum. After
doing this for an entire magnet or region of machine, it is possible to predict if
the beam pipe has a risk of absorbing so much energy from the halo particles

that one of the accidents in Chapter 6 may occur.

Chapter 9

Output and project results

The aperture module is presented from the user point of view. As part of the pre-
project a module requirement specification was written. It is here reproduced
with some comments on goal achievements.

9.1 Output for the end-user

MAD-X can give three kinds of output to the user: Screen output, tables and
plots based on the tables. To the screen, the module writes the aperture bot-
tleneck, the name of the element containing it and its position. The output
tables are filled with aperture-related parameters, such as apertypes, apertures,
tolerances and Twiss parameters. Plots can be created by the user by including
a call to the MAD-X plot-module in the input script, declaring which columns
in which tables to plot.

For the aperture command in the input script, the user can set a number
of parameters as explained in the user’s guide. This includes the possibility
to choose a start-point and an end-point for the computation. Presented is
two examples, one of a regular LHC arc FODO cell and one from the injection
region of beam 2, see Figure 7.9. We use the newest (as of Nov 15, 2004) LHC
sequence files, version 6.5, with the manual addition of tolerances as they are
not yet implemented in the official files. Also, all elements are not assigned an
aperture because of lack of data and/or the lack of need to know the aperture
for these elements.

A user’s guide for the aperture module can be found in Appendix B. This
will in the future be a part of the MAD-X user’s guide [5]. The output tables
and input files for the following examples can be found in Appendix D.5.

9.1.1 Regular arc cell

The regular arc cells are the simplest example, with few elements and a very reg-
ular aperture. Figure 9.1 shows the aperture from mb.al4r1.b1 to mcdo.al6rl.bl.
The elements are symbolically plotted with dotted lines at the bottom. The user
may give a “spec” value in the input, which is drawn as a line in the plot to easily
compare apertures with the minimum specification. The screen ouput for this

o6

CHAPTER 9. OUTPUT AND PROJECT RESULTS 57

example reads: APERTURE LIMIT: mq.14r1.b1:1, nl: 6.65091, at: 596.887,
which is the quadrupole in the middle of the plot.

15.0
spec onelem

1354

12.0

nl, spec, onelem

10.5 4

9.0 -

75 \ B

6.0

4.5 -
3.0+
15+

0.0 T

V6.5 Arc cells mb.al4r1.bl/mcdo.al6rl.bl MAD-X 2.12 15/11/04 17.23.58

540, 550, 560. 570, 580, 590. 600. 610. 620. 630. 640. 650.
Momentum offset = 0.00 %

660.

s(m)

Figure 9.1: Aperture in a regular arc cell at. The six long blocks are dipoles,
the two shorter ones are quadrupoles. The small aperture spikes after the
quadrupoles are small chromatic sextupole magnets.

9.1.2 Collision region

An experiment region contains many smaller magnets and instruments, with
large differences in aperture. The experiment region for the LHC-b detector(s)
is shown in Figure 9.2, which shows two main blocks of aperture limitations.
Each of the two blocks consists of a bending magnet (widest element) and four
quadrupoles (Q1, Q2 and Q3 in Figures 7.13 and 7.14). Between the main
parts, at s &~ 3335 is the point where the beams are collided. Here, the beam
should be very small, to have as many particle collisions as possible. In order to
achieve a low (-value here, the beam must be displaced towards the edges of the
physical aperture before and after the collision point. The screen output reads:
APERTURE LIMIT: mqxb.b2r2:1, nl: 6.86994, at: 3371.93, which means that
the bottleneck is in the second set of quadrupoles.

CHAPTER 9. OUTPUT AND PROJECT RESULTS 58

V6.5 IR2, mb.aldrlbl/mb.al7rlbl MAD-X2.12 24/11/04 13.57.38

20. ‘ 800.
5 Jonelem A
T |
& 18 - 700.
°]
c 16.
] - 600,
14.
| L 500.
12. -
10. - 400,
8.
- 300,
6‘ —
- 200.
4. -
- 100,
2.
oot PIPIAAIINSACOIIAE,] g
3200, 3225. 3250. 3275. 3300. 3325. 3350. 3375. 3400. 3425. 3450, 3475

Momentum offset = 0.00 %
s(m)

Figure 9.2: Aperture around the experiment point of LHC-b, from
bpmwb.412.b2 to bpmwb.4r2.b2. The two beams have a common beam pipe
in this region, the plot is valid only for beam two. The plot also shows how dif-
ferent table columns can be plotted in the same plot. We see how the beam must
be displaced in the quadrupole triplets to achieve high density at the collision
point.

9.2 Project status

As of mid-november 2004, the module is capable of aperture analysis of any ac-
celerator structure implementable in MAD-X. Improvements can still be made,
and more work will be done in the future to totally fulfil the module require-
ments.

9.2.1 Requirements and achievements

Finally, a summation of project achievements. The module requirement spec-
ifications were listed in the preproject, Appendix D.7. Here is a review and
comments on these.

B (m), B (m)

CHAPTER 9. OUTPUT AND PROJECT RESULTS 59

The module shall:

- Propagate some optics function across the machine elements, in
particular those one which describe the beam envelope.

Achieved: Yes.
The module calls functions that slices each node and uses the Twiss module to
compute optic parameters at short intervals in the machine.

- Displace the beam center with respect to the axis of the vacuum
chamber in order to take into account mechanical and alignment er-
rors, as well as beam closed orbit errors.

Achieved: Yes.
Mechanical and alignment tolerances, CO uncertainty, dispersion and beam
separation in quadrupole triplets, all this is taken into account.

- Compute the aperture left free for the beam in normalized beam
size units, with regards to both horizontal and vertical dimension.

Achieved: Yes.

The beam and beam pipe are described as polygons, the beam polygon dis-
placed according to previous requirement, and the aperture is computed for
both dimensions.

- Allow for the treatment of special cases, in particular when the axis
of an element does not coincide with the beam axis.

Achieved: February 2005.

Not fully investigated, but these elements might not be compatible with the
slicing functions used for the rest of the machine. A standard for MAD-X
treatment of tilted elements must be decided.

- Provide aperture data for other MAD-X modules, in particular in
order to allow for optics modelig with aperture constraints.

Achieved: Fully finished december 2004.

The aperture data are saved in an internal MAD-X table which can be accessed
by any function. Also, nl values are written to the twiss table for compatibility
with the matching module.

- Provide a graphic output of the calculated aperture along the ring.

Achieved: Yes.

The aperture table is compatible with the plot module (and is actually the
only table plotable apart from the Twiss table!), and produces its own style of
machine symbols and a spec line to enhance the readability of the plot.

9.2.2 Future plans

The aperture module will be maintained and further developed in the ABP
group. Future plans include:

CHAPTER 9. OUTPUT AND PROJECT RESULTS 60

1. Finalizing and bug-testing compatibility with the matching module to
allow numerical search for a specific aperture, or to use the aperture as
a constraint. This will let the user set an aperture in an element and
make MAD-X search for the correct magnet strengths which gives this
aperture, or to search for i.e. a low beta value at one place without going
above a set aperture value at another place. An example of regions where
low beta values are important is at experiment and injection points, as in
Figure 9.2, which shows how the shrink of the beta values at the collision
point can limit the aperture in the neighbouring magnets. Scheduled for
december 2004.

2. Upgrade the module to be able to handle elements which are tilted or not
centered on the closed orbit, as discussed in Chapter 7.5.1. Scheduled for
january and february 2005.

The aperture module keeper will from march 2005 be J. Bernard Jeanneret.

(Glossary

AB/ABP: Accelerators and Beam/Accelerators and Beam Physics.

Aperture: Unless otherwise stated: The amount of space between a particle
beam and the beam pipe. Also called geometrical acceptance. With phys-
ical aperture is meant the beam screen surrounding the halo. Dynamical
aperture is the limit where particle oscillations have a chaotic behaviour.

Apertype: Short for aperture type.
Beam screen: The area of a vertical slice of the beam pipe.

CERN: Organisation Européenne pour la Rechearche Nucléaire / European
Organization for Nuclear Research

Collimator: A physical obstacle used to stop particles in the beam halo.

Dispersion: Trajectory difference from the reference particle due to difference
in momentum.

Element: A piece of an accelerator, e.g. a magnet or an instrument. Every-
thing else than empty driftspaces.

eV: electronVolt. The energy gained by an electron accelerated by a potential
difference of 1 Volt. eV /c=m - ¢ = momentum

Hadron: Heavy subatomic particle, e.g. a proton or neutron.
Halo: The part of the beam outside the dynamical aperture.
i/o0: input/output.

LHC: Large Hadron Collider.

Longitudinal direction: The direction along the machine.
MAD-X: Modular Accelerator Design, version 10.

Node: All elements of an accelerator, and the driftspaces, are called nodes
inside MAD-X. Artificial nodes like markers (start or end) can also be
created.

Optics: The focusing effects the magnets exerts on the particles is comparable
to the optical effects of light through a prism.

STUC: Sgr-Trgndelag University College

61

Superconduction: A state when the resistance in a material is for practical
purposes equal to zero. This is achieved in the LHC when the Niob-
Titanium coils are cooled to the operating temperature of 1.9° Kelvin.

Synchrotron: A circular accelerator which keeps the beam in a path that on
the average has a fixed radius. The LHC and the circular accelerators in
its injector chain are all synchrotrons.

TeV: Tera-electronVolt = 1 000 000 000 000 eV. 7 TeV =~ the energy of a flying
mosquito.

Trajectory: A (possible) path of a particle.

Transverse direction: All directions perpendicular to the longitudinal one.

62

Bibliography

[1] CERN webpage: http://www.cern.ch
[2] LHC webpage: http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/

[3] J. Rossbach and P. Schmiiser, Basic course on accelerator optics, 1992.
This article can be found in the "CERN Accelerator School, 5th General
Acc. Physics course". (CERN 94-01, 26 Jan 1994, Vol. I)

[4] H. Wiedemann, Particle accelerator physics. Springer-Verlag 1993.

[5] Hans Grote, Frank Schmidt et al., MAD-X Users Guide,
http://frs.home.cern.ch/frs/Xdoc/uguide.html for newest version. (Also
included as Appendix D.6.)

[6] O. Briining and W. Herr, Problems and solutions of the exercises in the
optics course at the CAS 2003 in Zeuthen, 15.-26.9.2003.

[7] Image library of Superconducting magnet division at BNL:
http://www.bnl.gov/magnets/

[8] O. Grobner, Beam screen design concepts, a presentation given at VLHC
Magnet Workshop, 24-26 May 2000.

[9] J. B. Jeanneret and R. Ostojic, Geometrical acceptance in LHC Version
5.0, LHC Project Note 111, 1997.

[10] The LHC Design Report, Vol. I The LHC Main Ring, CERN-2004-003
[11] LHC-b webpage: http://lhcb-public.web.cern.ch/lhch-public/default.htm

63

Appendix A

Aperture module
documentation

To give an overall view of the structure of the aperture module, pseudo code
is written for the two most important functions. This includes function calls
with variables and a reference number to the flowchart in Figure A.1. Another
function with several subfunctions is build_pipe, but its structure is straight-
forward enough to be understood from the source code and comments. For
maximum profit, the pseudo code should be read together with the real code.

A.1 Pseudo-code: aperture

struct aper_node* aperture(char *table, struct node* use_range[], struct
table* tw_cp, int tw_cnt[])

{ /* variables read from input script, or default value */
halofile, pipefile, exn, eyn, dqf, betaqfx, nmom, dp, dparx, dpary,
cor, bbeat, nco, nhalopar, interval, spec, mass, energy.
ex, ey and dangle are calculated.

external_file(halofile, halox, haloy) is called to check for the
presence of a file with halo coordinates and read in the coordinates
if successful. [1]

If a file is not present, the halo parameters are used to make

halo coordinate tables, with a call to make_rectellipse(hhalo,
vhalo, rhalo, rhalo, halo_q_length, halox, haloy) [2]

Then fill_polygon_quadrants(halox, haloy, halo_q_length, halolength)
is called to make the other three quadrants of the halo. [3]

/* Get initial twiss parameters, from the end of the node before
the start-node */

read_twiss_param(current_sequ—tw_table—name, jslice, name, s,
X, y, betx, bety, dx, dy) reads the twiss parameters for the end
of the previous node. [4]

64

APPENDIX A. APERTURE MODULE DOCUMENTATION 65

The twiss table row counter is increased.

adj_halo_si(ex, ey, betx, bety, bbeat, halox, haloy, halolength,
haloxsi, haloysi) is called to change the shape of the halo according
to the beta functions, and adjust it to SI-units. [5]

Dispersions (normal and parasitic) for the beginning of the first
node are calculated from twiss parameters and input.

/*end of setup of first node start-values*/

As long as the stop flag is low:

{ The name of the node is saved.
Node name converted to C-format by trim_ws(name, NAME_L).

(6]

Length of the node is fetched with node_value("1"). [7]
double_from_table is called to fetch the s-value at the end
of the node from the Twiss table. [8]

The s-value at the start of the node is calculated.

The ‘‘current s’ value is set equal to the start s value.

The apertype of the node is saved.
Node apertype converted to C-format by trim_ws(apertype, NAME_L).
(9]

A check for whether the current node is a drift is performed,
and if this is the case the on_elem flag is set to -inf.

/* read data for tol displacement of halo */

get_node_vector (‘‘aper_tol’’,ntol,aper_tol) is called to read

the tolerance values for the current node. [10]

If exactly 3 values are read, the tolerances are used in further
calculations. If not, the tolerances are set to 0.

A check for an input file with pipe coordinates is performed
with external_file(pipefile, pipex, pipey). [11] If there
is no such file, then build_pipe(apertype, apl, ap2, ap3,
ap4, pipelength, pipex, pipey) tries to make a pipe polygon
[12].If this too is not successful:

{ nl1 is set to inf, on_ap is set to -inf.

read_twiss_param(jslice, name, s, x, y, betx, bety, dx,

dy) reads new twiss parameters. [13]
write_aperture_table(name, nl, r, xshift, yshift, apertype,
apl, ap2, ap3, ap4, minratio, nr, s, x, y, betx, bety,

dx, dy, at) writes information to an internal table. [14]
on_ap is reset to default value 1.

APPENDIX A. APERTURE MODULE DOCUMENTATION 66

}

nl is written to the Twiss table.

The twiss table row counter is increased.

/* Dispersion and si-adjusted halo is calculated to have

values correct for the start of next node */

Dispersions (normal and parasitic) are calculated from

twiss parameters and input.

adj_halo_si(ex, ey, betx, bety, bbeat, halox, haloy, halolength,
haloxsi, haloysi) is called to change the shape of the

halo according to the beta functions, and adjust it to

SI-units. [15]

However, if either an external file with pipe coordinates
was given, or coordinates could be calculated from the element
apertures with build_pipe, the nl computation routine starts:

{

node_nl is given initial value inf.

The number of necessary slices is calculated.
interp_node(nint) is called to slice the node. [16]
embedded_twiss() is called to make a Twiss table for the
slices. [17]

For every slice:

{ minratio and ratio are set to start value inf.

If the slice is not the first in the node:

{ read_twiss_param(‘‘embedded_twiss_table’’, jslice,
name, s, X, y, betx, bety, dx, dy) reads new twiss
parameters. [18]
The ‘‘current s’> is moved to the end of the slice.
adj_halo_si(ex, ey, betx, bety, bbeat, halox, haloy,
halolength, haloxsi, haloysi) adjusts the halo according
to Twiss parameters. [19]
Dispersion (normal and parasitic) for both planes
is also calculated.

}

The aperture is calculated for several angles in each

slice:

{ adj_coord_quadrant (angle, dispx, dispy, dispxadj,
dispyadj) adjusts dispersion to worst-case for the
current angle. (Sets correct signs). [20]

Finds displacement due to closed orbit uncertainty.
race(xshift, yshift, r, angle, tolx, toly) finds displacement
due to tolerance uncertainty. [21]

adj_coord_quadrant (angle, tolx, toly, tolxadj, tolyadj)

sets sign to the tolerance values according to the

angle. [22]

Total displacement due to uncertainties is calculated

APPENDIX A. APERTURE MODULE DOCUMENTATION 67

}

The return value is a pointer to a struct containing the information

}

}

in both planes.

The pipe polygon, halo polygon and total displacement

is sent to aperture_calc(deltax, deltay, ratio, haloxsi,
haloysi, halolength, pipex, pipey, pipelength, minratio)
for calculation of the aperture in the slice. [23]

If the aperture found is smaller than the smallest
previously found for other angles in the slice, it

is saved.

}

Aperture parameters are calculated from the smallest
aperture found.

write_aperture_table(name, nl, r, xshift, yshift, apertype,
apl, ap2, ap3, ap4, minratio, nr, s, x, y, betx, bety,

dx, dy, at) writes information to an internal table.

[24]

If the nl found is the smallest found for this node,

it is saved along with the corresponding Twiss parameters.

write_aperture_table(minimum, node_nl, r, xshift, yshift,
apertype, apl, ap2, ap3, ap4, minratio, nr, s, x, y, betx,
bety, dx, dy, at) writes information to an internal table.
This is the summary for the node. [25]
reset_interpolation(nint) is called to de-slice the node
and consider it as a unity again. [26]

the node_nl is written to the Twiss table.

The twiss table row counter is increased.

If the node_nl is the smallest found for this range of
elements, its position, aperture and tolerance parameters
are saved. This is the aperture bottleneck.

The stop flag is set either if the current node is the end
of the range, or if

advance_node() is not able to jump to the next node. [27]
Else, the loop begins again with the next node.

saved about the bottleneck node.

A.2 Pseudo-code; aperture calc

double aperture_calc(double p, double q, double* minhl, double haloxcp[],

double haloycp[], int halolength, double pipex[], double pipey[], int
pipelength, double minratiocmp)

APPENDIX A. APERTURE MODULE DOCUMENTATION 68

{ Halo polygon is displaced.
Counter set to zero before future use.
check_if_inside(p, q, pipex, pipey, dist_limit, pipelength) is
called to investigate whether p,q is inside the pipe polygon.
[21.1] If it is:

{ /* Adding of extra apexes on the halo starts */
For every apex on the halo:

{ Add the old coordinate values.
Then for every apex on the pipe polygon:

}

{

linepar(p, q, pipex[i], pipey[il, al, bl) finds parameters
for the line centre -> pipe apex. [21.2]
linepar(halox[j], haloy[j], halox[j+1], haloy[j+1],

a2, b2) finds parameters for a line on the halo polygon.
[21.3]

intersection(al, bl, a2, b2, pipex[i], pipeyl[il], halox[j],
haloy[j], verl, ver2, xm, ym) finds the intersection
coordinates for these lines. [21.4]

online(xm, ym, halox[j], haloy[j], halox[j+1], haloy[j+1],
dist_limit) finds whether the intersection point is

on the halo polygon. [21.5]

online(p, q, pipex[i], pipey[il, xm, ym, dist_limit)

finds whether the intersection point and the current

pipe apex is on the same side of the halo centre. [21.6]
If the last two tests are passed, the intersection
coordinates are added as an apex in the new halo polygon.

Number of apexes on the new halo is saved.

/* The new halo is then compared with the pipe, to find the
largest possible aperture /*
For every apex on the pipe polygon:

{

Treat every apex on the new halo polygon:
{ 1linepar(p, q, newhalox[j], newhaloy[jl, al, bl) finds

parameters for the line halo centre -> halo apex. [21.7]
linepar(pipex[i], pipey[il, pipex[i+1], pipey[i+1],

a2, b2) finds parameters for a line on the pipe polygon.
[21.8]

intersection(al, bl, a2, b2, newhalox[j], newhaloy[j],
pipex[i], pipey[i]l, verl, ver2, xm, ym) finds the intersection
coordinates for these lines. [21.9]

online(xm, ym, pipex[i], pipeyl[il, pipex[i+1], pipeyl[i+1],
dist_limit) finds whether the intersection point is

on the pipe polygon. [21.10]

online(p, q, newhalox[j], newhaloy[j], xm, ym, dist_limit)
finds whether the intersection point and the current

halo apex is on the same side of the halo centre. [21.11]
If the last two tests are passed, the intersection

APPENDIX A. APERTURE MODULE DOCUMENTATION 69

coordinates are used to calculate the possible expansion
of the halo polygon inside the pipe. If this is the
smallest expansion ratio yet found, it is saved.

}

If p,q is outside the pipe, the expansion ratio is set to
zero.

70

APPENDIX A. APERTURE MODULE DOCUMENTATION

LS external_file

§ @

21

k4

Tim_ws

adj_halo_si

h 4

race

14 24 26

write_aperture_table

node_ialle

23

L

25T 2R
252 233

check_if_inside

234 218

255 20
256 2N

¥

linegar

rersection

aperure_calc

20 22

h

online

12

apertire T

26

ertfyedded_tviss

read fwiss_param

ki

build_pipe

v

{halo
(pipe)
fill_polygon_ouadrants

| get aperture

hd

v

reset_inferpolation

v

advance_node

double_fram_table

get_nocle_wector

v

make_rectellipse
{fipe)
fhalo)

adlj_coord_ouadrant

including a few func-

tions shared with other modules. The main data flows are numbered, see pseudo

Figure A.1: Overview of the aperture module functions,
code for variable names.

APPENDIX A. APERTURE MODULE DOCUMENTATION 71

A.3 Functions

A short description of all functions, their parameters, internal variables and
return values. All functions are written by the author.

A.3.1 adj coord quadrant

Adjusts the sign of x and y coordinates according to which quadrant they belong
in.

void adj_coord_quadrant (double angle, double x, double y,
double* xquad, doublex yquad)

Description

Receives a coordinate pair and an angle value. The signs of the coordinates are
changed according to which quadrant the angle is in. The coordinates must be
given as if in the first quadrant, i.e. only positive values. The function is used to
make an entire polygon after calculations for the first quadrant has been done,
and to displace the dispersion values to worst-case for each quadrant.

Parameters

Table A.1: adj coord _quadrant function parameters.

Parameter Description

double angle The angle in radians.

double x x-coordinate

double y y-coordinate

double* xquad | x-coordinate with adjusted sign
double* yquad | y-coordinate with adjusted sign

Internal variables

Table A.2: adj coord quadrant internal variables.

Variable Description
int quadrant | Indicating the quadrant: 1, 2, 3 or 4.

Return value

No return value. Changes values of xquad and yquad.

Remarks

No remarks.

APPENDIX A. APERTURE MODULE DOCUMENTATION 72

A.3.2

Adjusts halo coordinates from normalized to particle density to si-units (meters).

adj halo_si

void adj_halo_si(double ex, double ey, double betx,
double bety, double bbeat, double halox[],
double haloy[], int halolength,
double haloxsi[], double haloysil[])

Description

Receives tables of normalized x- and y-coordinates and the optics parameters
necessary to transform them into si-units. The transfer formula itself is simple,
given by Eq. 6.1.

Parameters

Table A.3: adj halo_si function parameters.

Parameter Description
double ex emittance in the x-plane, in meters
double ey emittance in the y-plane, in meters

double betx
double bety
double bbeat

beta value in the x-plane, in meters
beta value in the y-plane, in meters
beta beating factor (Eq. 2.2)

double halox

array with x-coordinates of halo, in sigma

double haloy

array with y-coordinates of halo, in sigma

int halolength

number of coordinate pairs

double haloxsi

array with x-coordinates of halo, in meters

double haloysi

array with y-coordinates of halo, in meters

Internal variables

Table A.4: adj halo_si internal variables.

Variable | Description
int j counter

Return value

No return value.

Remarks

No remarks.

APPENDIX A. APERTURE MODULE DOCUMENTATION 73

A.3.3 aperture

The main function of the aperture module.

struct aper_node* aperture(char *table, struct node* use_rangel[],
struct table* tw_cp, int tw_cnt[])}

Description

Gives the superior structure of the aperture module. Supervises input of param-
eters from files and output to tables. Jumps from node to node along the ring,
retrieving data, slicing nodes and calculating aperture. Handles displacement
due to error tolerances (Chapter 7), orders aperture calculations to start and
keeps track of the minimum aperture for each node.

Parameters

Table A.5: aperture function parameters.

Parameter Description

char *table name of the aperture table

struct node* use range | pointer to array with start and end node

struct table* tw_ cp pointer to a copy of the current Twiss table

int tw_ cnt| | array of pointer to nl column and row in Twiss table

Internal variables
Return value

Returns a pointer to the node containing information on the node with the
smallest nl value.

Remarks

Space in memory for the arrays containing polygon coordinates is alloceted
statically, once and for all at the start of the function. The same is the case in
the aperture_calc function. Dynamic allocation would be to slow, since the
polygons are recalculated thousands of times during a normal run. Increase in
table size may be done by altering the definition of MAXARRAY in the file madxd.h.

APPENDIX A. APERTURE MODULE DOCUMENTATION 74

Table A.6: aperture internal variables, part 1.

Variable Description

int stop Flag to stop the loop over nodes

int i Saves return values from slicing functions
int nint Number of slices for the node

int jslice Counter for node slices

int halo g length

Number of coordinate pairs in 1. quadrant of halo

int halolength

Number of coordinate pairs in halo polygon

int pipelength

Number of coordinate pairs in pipe polygon

int namelen

Containing constant NAME L

int nhalopar

Number of halo parameters given

int ntol

Number of tolerance parameters given

double on__ap

Flag indicating whether current node has a valid
aperture

double on__elem

Flag indicating whether current node is a drift or not

double mass

Mass per particle in the beam

double energy

Energy per particle in the beam

double exn, eyn

Normalized emittance in horisontal and vertical
planes

double dqf, betqfx

Linear dispersion and beta value in x-plane in a fo-
cusing quadrupole

double dp

Momentum deviation used for dispersion calculation

double dparx, dpary

Fraction of parasitic dispersion relative to linear dis-
persion

double cor Circular closed orbit tolerance
double bbeat Beta beating factor (Eq. 2.2)
double nco Number of computation angles per quadrant

double halo[|

Array for halo parameters

double interval

Approximate length of node slices

double spec

Line in plot

double ex, ey

Emittance in x- and y-planes.

double s

Length along the accelerator, in meters

double x, y

Distance from reference trajectory, in meters

double betx, bety

Beta values, in meters

double dx, dy

Dispersion values, in meters

double ratio, minratio

Aperture calculated for a node, and its aperture limit
so far

double nl, nr

Aperture parameters, see Figure 6.5

double length, at

Length and longitudinal position of a node, in meters

double node__...

Minimum values for the node

double aper_ tol[|

Array for tolerance parameters

double ap

Pipe parameters, see Chapter 5.2, in meters

APPENDIX A. APERTURE MODULE DOCUMENTATION

Table A.7: aperture internal variables, part 2.

75

Variable

Description

double dispx, dispy

Sum of linear and parasitic dispersion

double cox, coy

Circular closed orbit tolerance, and x and y
coordinate pairs around the circle

double tolx, toly

Sum of mechanichal and alignment tolerances,
in x and y coordinates

double dispxadj, dispyadj

total dispersion adjusted to a specific quad-
rant

double coxadj, coyadj

cox and coy adjusted to a specific quadrant

double tolxadj, tolyadj

tolx and toly adjusted to a specific quadrant

double angle

Counter for radian values.

double dangle

Interval for the angle counter

double deltax, deltay

Total displacement, see Chapter 7

double xshift, yshift, r

Parameters for racetrack, in meters. See

Chapter 5.4

double halox]| |, haloy]| |

Arrays with coordinates of halo, in sigma

double haloxsi[|, haloysi] |

Arrays with coordinates of halo, in meters

double pipex| |, pipey]| |

Arrays with coordinates of pipe, in meters

char *halofile

Pointer to name of file with halo parameters

char *pipefile

Pointer to name of file with pipe parameters

char *minimum

Pointer to string with name of minimum slice
in each node

char apertype] |

Apertype for the different nodes (Table 5.1 or

[5])-

char name] |

Name for the different nodes

struct aper _node
limit node

Structure containing information about bot-
tleneck node

struct aper _node*
lim pt

Pointer to bottleneck node

APPENDIX A. APERTURE MODULE DOCUMENTATION 76

A.3.4 aperture calc

Receives two polygons (halo and pipe) and calculates the maximum size of the
halo, while still fitting inside the pipe.

double aperture_calc(double p, double q, double* minhl,
double haloxcp[], double haloycpl],
int halolength,
double pipex[], double pipeyl[],
int pipelength, double minratiocmp)

Description

Receives halo and pipe polygon, and the centre of the halo polygon relative to
the pipe polygon. An imaginary line is drawn from the halo centre to each apex
on the pipe, and a the coordinates where this line crosses the halo polygon is
added as a new apex on the halo. Then new lines are drawn, from halo centre
to each halo apex and further. The distance from halo centre to the coordinates
where the new lines cross the pipe polygon is compared with the distance halo
centre to the corresponding halo apex. The minimum ratio is saved, since this
is the maximum number the halo size can be multiplied with, and still fit inside
the pipe.

Parameters

Table A.8: aperture calc function parameters.

Parameter Description

double p, q x- and y-plane displacement of halo polygon, in me-
ters

double* minhl The smallest ratio found

double haloxcp] |, haloycp[| | Arrays with coordinates of halo, before displaced
with p and ¢, in meters

int halolength Number of coordinate pairs (apexes) on the halo
double pipex| |, pipey]| | Arrays with coordinates of the pipe, in meters
int pipelength Number of coordinate pairs (apexes) on the pipe

Internal variables

Return value

Returns a 0 on completion, returns -1 if the halo centre is outside the beam
pipe.

Remarks

No remarks.

APPENDIX A. APERTURE MODULE DOCUMENTATION 7

Table A.9: aperture calc internal variables.

Variable Description

int i Counter, mostly used for pipe arrays
int j Counter, mostly used for halo arrays
int ¢ Counter, general

int verl, ver2

Flags indicating whether a line is vertical

int newhalolength

Length of the halo polygon after the adding of
new apexes

double halox]| |, haloy]| |

Arrays with coordinates of halo polygon, after
displacement, in meters

double newhalox] |, newhaloy] |

Arrays with coordinates of halo polygon after
adding of new apexes, in meters

double dist _limit

Precision limit when determining whether two
values are alike

double a, b Line parameters

double xm, ym Meeting point coordinates between two lines

double 1 Distance from halo centre to an apex on the
halo

double h Distance from halo centre to pipe wall,

through the apex on the halo

APPENDIX A. APERTURE MODULE DOCUMENTATION 78

A.3.5 build pipe

Provides a pipe polygon, given the apertype and aperture parameters for a node.

int build_pipe(char* apertype, double* apl, doublex ap2,
double* ap3, double* ap4, int* pipelength,
double pipex[], double pipeyl[l)

Description

Receives the apertype of a node, and reads the corresponding aperture pa-
rameters. Sets up the data and sends it to another function which calculates
coordinates for the firs quadrant. A third function is then called to make the

total polygon.

Parameters

Table A.10: build _pipe function parameters.

Parameter Description

char* apertype Apertype for the different nodes (Table 5.1 or [5])

double* ap Pipe parameters, see Chapter 5.2, in meters

int* pipelength Number of coordinate pairs on the pipe polygon

double pipex| |, pipey|[| | Arrays with coordinates of the pipe polygon, in me-
ters

Internal variables

Table A.11: build pipe internal variables.

Variable Description
int i Counter
int err Error flag, contains the return value from the function that

calculates the geometry

int quarterlength | Number of coordinate pairs in the first quadrant of the pipe
polygon

Return value

Returns err, which is 0 for successful completion.

Remarks

The racetrack apertype is treated as a circle. The coordinates in the first quad-
rant are then displaced before making the complete polygon.

APPENDIX A. APERTURE MODULE DOCUMENTATION 79

A.3.6 check if inside

Calculates whether a point is inside or outside of a polygon.

int check_if_inside(double p, double g,

Description

double pipex[], double pipeyl],
double dist_limit, int pipelength)

Receives x- and y-coordinates for a point, and coordinates for a polygon in
the same space. Calculates then whether the point is inside or outside of the
polygon. The method is explained in Chapter 8.1.

Parameters

Table A.12: check if inside function parameters.

Parameter Description

double p, q x- and y-plane displacement of halo polygon, in me-
ters

double pipex| |, pipey[| | Arrays with coordinates of the pipe polygon, in me-
ters

double dist_ limit Precision limit when determining whether two values
are alike

int pipelength

Number of coordinate pairs in pipe polygon

Internal variables

Table A.13: check if inside internal variables.

Variable Description
int i Counter
double n12 Numerator in equation for sine and cosine alfa

double salfa, calfa

sine and cosine alfa

double alfa

angle result with sine and cosine alfa

Return value

Returns a 0 if point is outside or on polygon, 1 if it is inside.

Remarks

No remarks.

APPENDIX A. APERTURE MODULE DOCUMENTATION 80

A.3.7 external file

Checks for the presence of an external file with either halo or pipe coordinates.

int external_file(char *file, double tablex[], double tableyl[])

Description

Receives a filename, checks for the presence of this file, and then tries to read
coordinates from it.

Parameters

Table A.14: external file function parameters.

Parameter

Description

char *file

Name of file

double tablex]], tabley[| | Arrays to store coordinates read from the file

Internal variables

Table A.15: check if inside internal variables.
Variable | Description
int i Counter for number of coordinate pairs

Return value

Returns i, the length of the arrays.

Remarks

No remarks.

APPENDIX A. APERTURE MODULE DOCUMENTATION 81

A.3.8 fill aperture header
Fills the header of the aperture table.

void fill_aperture_header(struct table* aper_t,
struct aper_nodex lim)}

Description

Receives a pointer to the aperture table, and a pointer to the bottleneck node.
Fills the header of the aperture table with information on the values used for
computation and the minimum aperture found.

Parameters

Table A.16: fill aperture header function parameters.

Parameter Description
struct table* aper t Pointer to the aperture table
struct aper _node* lim | Pointer to the bottleneck node

Internal variables

Table A.17: fill aperture header internal variables.

Variable Description

int i Counter for characters and parameters
int h_length | Number of header lines

double dtmp | Temporary buffers for double values
double vtmp | Temporary buffer for double vector
char tmp] | Temporary buffer for string

char *stmp Temporary buffer for string

Return value

No return value.

Remarks

No remarks.

APPENDIX A. APERTURE MODULE DOCUMENTATION 82

A.3.9 fill polygon quadrants

Makes a complete polygon from first quadrant coordinates.

void fill_polygon_quadrants(double polyx[], double polyyl[],
int quarterlength, int* halolength)}

Description

Receives two table with coordinates for the first quadrant, and mirrors the across
the x and y axes. Uses simple copying of values, and calls then the function
adj_coord_quadrant to adjust the signs correctly.

Parameters

Table A.18: fill polygon quadrants function parameters.

Parameter Description

double polyx] |, polyy[| | Arrays containing polygon coordinates

int quarterlength Number of coordinate pairs in the first quadrant
int* halolength Number of coordinate pairs in total polygon

Internal variables

Table A.19: fill polygon quadrants internal variables.

Variable | Description
int i Counter for quadrants 2, 3 and 4
int j Counter for quadrant 1

Return value

No return value.

Remarks

No remarks.

APPENDIX A. APERTURE MODULE DOCUMENTATION 83

A.3.10 intersection

Calculates the intersection point of two infinitely long lines.

void intersection(double al,double bl,double a2,double b2,
double x1,double yl1,double x2,double y2,
int verl,int ver2,double* xm,double* ym)

Description

Receives line parameters a and b for two lines, and calculates their intersection
point. Receives also start and endpoints for the linepieces, and whether the
lines are vertical. In the case of a vertical, line, the intersection coordinates are
set equal to the start point coordinates of the other line.

Parameters

Table A.20: intersection function parameters.

Parameter Description

double al, bl, a2, b2 | Parameters describing the two lines

double x1, x2, y1, y2 | Start and end coordinates for the line pieces
int verl, ver2 Flag set in case a line is vertical

double* xm, ym Intersection coordinates

Internal variables

No internal variables.

Return value

No return value.

Remarks

The function does not support all kinds of parallell lines, but this is not necessary
for our purpose. In the case of parallell lines, xm will go to infinity, and will
therefore not pass the tests in function online.

APPENDIX A. APERTURE MODULE DOCUMENTATION 84

A.3.11 linepar

Calculates parameters a and b for a line going through two points.

double x1, double yl1l, double x2, double y2, double* a, doublex b

Description

Receives coordinates for two points in space, and calculates the parameters a
and b describing the line going through them.

Parameters

Table A.21: linepar function parameters.

Parameter Description

double x1, y1 | Coordinates for the first point
double x2, y2 | Coordinates for the second point
double* a, b | Parameters describing the line

Internal variables

Table A.22: linepar internal variables.

Variable Description
int vertical | A flag set if the line through the points is vertical

Return value

Returns the value of vertical, which is 1 if the line is vertical, else 0.

Remarks

No remarks.

APPENDIX A. APERTURE MODULE DOCUMENTATION 85

A.3.12 make rectellipse

Makes a polygon based on given parameters.

int make_rectellipse(double* apl, doublex ap2,

Description

double* ap3, double* ap4,
int* quarterlength,
double tablex[], double tableyl[])

Chapter 5.2 shows how most beam pipe apertypes can be parametrized as a
rectellipse. The halo polygon might also be a kind of rectellipse. Chapter 5.3
explains the theory behind the function. Only coordinates for the first quadrant

are found.

Parameters

Table A.23: make rectellipse function parameters.

Parameter Description

double* ap Pipe parameters, see Chapter 5.2, in meters
int* quarterlength Number of coordinate pairs in the first quadrant
double tablex] |, tabley[| | Arrays with polygon coordinates

Internal variables

Table A.24: make rectellipse internal variables.

Variable

Description

double x, y

Coordinates for the points used to find angles alfa and theta

double angle

Counter for radian values

double alfa

Angle up to first point in the arc, in radians

double theta

Angle from last point in the arc to 7/2, in radians

double dangle

Interval for the angle counter

double napex

One less than number of points on the arc

Return value

Returns a 0 on successful completion, returns -1 if the parameters given were

corrupted.

Remarks

No remarks.

APPENDIX A. APERTURE MODULE DOCUMENTATION 86

A.3.13 online

Determines whether a point is on a linepiece.

double online(double xm, double ym, double startx, double starty,
double endx, double endy, double dist_limit)

Description

Receives start- and end-coordinates for a line piece, and coordinates for a single
point in space. Uses Equation 8.5 to calculate whether the point is on the
linepiece.

Parameters

Table A.25: online function parameters.

Parameter Description

double xm, ym Coordinates for the single point

double startx, starty | Start coordinates for the linepiece

double endx, endy End coordinates for the linepiece

double dist_limit Precision limit when determining whether two values
are alike

Internal variables

Table A.26: online internal variables.

Variable | Description
cosfi Result from Eq. 8.5

Return value

Returns cosfi, which is -1 if the test point is on the linepiece. If not, it is > -1.

Remarks

No remarks.

APPENDIX A. APERTURE MODULE DOCUMENTATION 87

A.3.14 pro_aperture

The “set-up” function for the aperture module.

void pro_aperture(struct in_cmd* cmd)

Description

The function is called from MAD-X’ command interpreter, and receives the
aperture command. Initialises an aperture table. Sets pointers to correct row
and column in the Twiss table, for reading of Twiss parameters and writing
of n1. Calls the aperture function which starts the computation. Prints the

resulting tables to files.

Parameters

Table A.27: pro_aperture function parameters.

Parameter Description

struct in_cmd* cmd | Pointer to the aperture command, with its parameters

Internal variables

Table A.28: pro_aperture internal variables.

Variable

Description

struct aper _node* limit_node

Pointer to the bottleneck node

struct node *use_range| |

Pointer to array of nodes containing start and
end node

struct table* aperture table

Pointer to the aperture table

struct table* tw_ cp

Pointer to the Twiss table

char *file

Aperture table output filename

char *range

The range in text, as read from the command

char tw_name| |

Array to contain the name of the Twiss table

char *table

Aperture table name

int tw_cnt[|

Array with values of row and column in the
Twiss table

Return value

No return value.

Remarks

No remarks.

APPENDIX A. APERTURE MODULE DOCUMENTATION 88

A.3.15 race
Calculates the displacement of the beam centre due to tolerance uncertainties.

void race(double xshift, double yshift, double r,
double angle, double* x, doublex y)

Description

Receives parameters as shown in Figure 7.5, and the angle for which the dis-
tance from outline to centre shall be calculated. Chapter 7.3.1 gives a thorough
explanation of the algorithm. Calculations are done for first quadrant only.

Parameters

Table A.29: race function parameters.

Parameter Description

double r Radius for the arched part of the racetrack

double xshift, yshift | Displacement of the arched part

double angle The distance from centre to outline is calculated for
this angle

double* x, y Calculated distances in both planes

Internal variables

Table A.30: race internal variables.

Variable Description

double angle0 | Angle to the first coordinate on the arc
double anglel | Angle to the last coordinate on the arc
double angle2 | Angle to the centre of radius

double alfa See Figure 7.5

double gamma | See Figure 7.5

double theta See Figure 7.5

Return value

No return value.

Remarks

This function is not used for making a racetrack pipe polygon. The function
make_rectellipse serves that purpose.

APPENDIX A. APERTURE MODULE DOCUMENTATION 89

A.3.16 read twiss param

Reads twiss parameters from an internal twiss table.

void read_twiss_param(char* table int* jslice, doublex s,
double* x, doublex y,
double* betx, doublex bety,
double* dx, doublex dy)

Description

Receives the name of the table and the row to be read. For the sequence Twiss
table, the row is dependant of the range. For the sliced node Twiss table, the
row is dependant of which slice to read. Reads then Twiss parameters from the
internal table.

Parameters

Table A.31: read twiss param function parameters.

Parameter Description

char* table Name of the table to read

int* jslice Number of the slice to be read

double* s Length along the accelerator, in meters
double* x, y Distance from reference trajectory, in meters
double* betx, bety | Beta values, in meters

double* dx, dy Dispersion values, in meters

Internal variables

No internal variables.

Return value

No return value.

Remarks

No remarks.

APPENDIX A. APERTURE MODULE DOCUMENTATION 90

A.3.17 trim_ ws
Converts a string from FORTRAN format to C format.

void trim_ws(char* string, int len)

Description

The MAD-X source code provides a developer with the function node_string,
which returns the string value of a given parameter. Since MAD-X needs to
be compatible with FORTRAN, string values have a fixed length. A string
variable of length 24, holding the word “rectellipse” would have 9 whitespaces
at the end. To convert the string to C-format, the function replaces the first
whitespace with a “\0”.

Parameters

Table A.32: trim _ws function parameters.

Parameter | Description
char* string | The string to convert
int len Length of the string in FORTRAN format

Internal variables

Table A.33: trim_ws internal variables.

Variable | Description
int ¢ Counter

Return value

No return value.

Remarks

No remarks.

APPENDIX A. APERTURE MODULE DOCUMENTATION 91

A.3.18 write aperture table

Writes aperture and twiss parameters to an internal table.

void write_aperture_table(char* name, doublex nl, double* rtol,

Description

double *xtol, doublex ytol,
char* apertype,

double* apl, double* ap2,
double* ap3,doublex ap4,

double* on_ap, double* on_elem,
double* spec,

double* s, doublex x, doublex y,
double* betx, double* bety,
double* dx, doublex dy)

Receives aperture and twiss parameters, and writes them to an internal table.
The user chooses in the input script which parameters to print in the output

table.

Parameters

Table A.34: write aperture table function parameters.

Parameter Description
char* name Name of the node
double* n1 nl aperture

double* rtol, xtol, ytol

Tolerance values

char* apertype

Apertype for the node

double* ap

Pipe parameters, see Chapter 5.2, in meters

double on__ap

Flag indicating whether current node has a valid
aperture

double on__elem

Flag indicating whether current node is a drift or not

double spec

Line in plot

double s

Length along the accelerator, in meters

double x, y

Distance from reference trajectory, in meters

double betx, bety

Beta values, in meters

double dx, dy

Dispersion values, in meters

Internal variables

No internal variables.

Return value

No return value.

APPENDIX A. APERTURE MODULE DOCUMENTATION

Remarks

No remarks.

92

Appendix B

Aperture module user’s guide

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
APERTURE

Computes the nl values for a piece of machine. Each element is sliced into
thick subelements at intervals, and the aperture is computed for each slice. The
computation is based on the last Twiss table, so it is important to run the
Twiss and aperture commands on the same period or sequence, see the aperture
example. Also showed in the example is how N1 values can be plotted.

The minimum n1 for each element is written to the last Twiss table, to allow
for matching by aperture.

APERTURE,
file=filename,
halofile=filename,
pipefile=filename,
range=range,
exn=real,
eyn=real,
dgf=real,
betagfx=real,
dp=real,
dparx=real,
dpary=real,

cor=r,

bbeat=real,
nco=integer,
halo={real,real,real,real},
interval=real
spec=real;

where the parameters have the following meaning:
file: Output file. Default = aperl.out

halofile: Input file w/halo polygon coordinates. Will suppress an eventual halo
parameter. Default = none

93

APPENDIX B. APERTURE MODULE USER’S GUIDE 94

pipefile: Input file w/pipe polygon coordinates. Default = none
range: Range given by elements. Default = #s/#e

exn: Normalised horizontal emittance. Default = 3.75e-6

eyn: Normalised vertical emittance. Default = 3.75%e-6

dgf: Peak linear dispersion [m]. Default = 2.086

betaqfx: Beta x in standard qf [m]. Default = 170.25

dp: Bucket edge at the current beam energy. Default = 0.0015
dparx: Fractional horizontal parasitic dispersion. Default = 0.273
dpary: Fractional vertical parasitic dispersion. Default = 0.273
cor: Maximum radial closed orbit uncertainty [m]. Default = 0.004
bbeat: Beta beating coefficient applying to beam size. Default = 1.1
nco: Number of azimuth for radial scan. Default = 5

halo: Halo parameters: {n, r, h, v}. n is the radius of the primary halo, r is the
radial part of the secondary halo, h and v is the horizontal and vertical
cuts in the secondary halo. Default = {6, 8.4, 7.3, 7.3}

interval: Approximate length in meters between measurements. Actual value:
nslice = nodelength /interval, nslice is rounded down to closest integer,
interval = nodelength /nslice. Default = 1.0

spec: Aperture spec, for plotting only. Gives the spec line in the plot. Default
=0.0

A more detailed description can be found in “Computation of accelerator
aperture and its application to LHC”.

iwaarum, November 19, 2004

APPENDIX B. APERTURE MODULE USER’S GUIDE 95

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
APERTURE EXAMPLE

The aperture module needs a Twiss table to operate on. It is important not to
USE another period or sequence between the Twiss and aperture module calls,
else aperture looses its table. One can choose the ranges for Twiss and aperture
freely, they need not be the same.

use, period=lhcbl;
select, flag=twiss, range=mb.ald4rl.bl/mb.al7rl.bl,

column=keyword, name, parent, kOl, kl1l, s, betx, bety, nil;
twiss, file=twiss.bl.data, betx=beta.ipl, bety=beta.ipl,

x=+x.1ipl, y=+y.ipl, py=+py.ipl;

select, flag=aperture, column=name,nl,x,dy;
aperture, range=mb.bl4rl.bl/mb.al7rl.bl, spec=5.235;
plot,table=aperture,noline,vmin=0,0,vmax=30,300,haxis=s,vaxisl=nl,on_elem,vaxis2=betx,bety,co

The select command can be used to choose which columns to print in the
output file. Column names: name, nl, apertype, rtol, xtol, ytol, apl, ap2, ap3,
ap4, on_ap, on__elem, spec, s, betx, bety, dx, dy, x, y,

where ap# means for all apertypes but racetrack:
apl = half width rectangle
ap2 = half heigth rectangle
ap3 = half horizontal axis ellipse (or radius if circle)
ap4 = half vertical axis ellipse

For racetrack, the aperture parameters will have the same meaning as the
tolerances:
apl and xtol = horizontal displacement of radial part
ap2 and ytol = vertical displacement of radial part (ytol)
ap3 and rtol = radius (rtol)
ap4 = not used

On_elem indicates whether the node is an element or a drift, and on ap
whether it has a valid aperture. The Twiss parameters are the interpolated
values used for aperture computation.

When one wants to plot the aperture, the table=aperture parameter is nec-
essary. The normal line of hardware symbols along the top is not compatible
with the aperture table, so it is best to include noline. Plot instead the column
on__elem along the vaxis to have a simple picture of the hardware. Spec can be
used for giving a limit value for n1, to have something to compare with on the
plot. This example provides a plot, where we see the n1, beta functions and the
hardware symbolized by on_elem.

APPENDIX B. APERTURE MODULE USER’S GUIDE 96

nl, onelem

V6.5 IR2, mb.al4rl.bl/mb.al7rl.bl MAD-X2.12 22/11/04 11.31.18

30. 300.
onelemn By

25. | - 250.

20. | - 200.
N N

15. | - 150.

10. | - 100.
5. - 50.

00 1 I I I[AL, ‘\ i 00

540. 560. 580. 600. 620. 640. 660. 680. 700. 720. 740.

Momentum offset = 0.00 %
s(m)

Figure B.1: Plot example.

B (m), B/ (M)

Appendix C

Sine and cosine proof

Using the built-in sin() and cos () functions in C is slower than calculating an-

gles from a gradient. In the function check_if_inside we have used the latter

approach, and the equations are based on general trigonometric deductions.
The sinus is calculated from Equation C.1:

a1b2 — agbl

allb] (6D

sing =

To prove that this is a correct assumption we start by looking at Figure C.1,
showing two vectors a and b in the x,y plane.

V

- &

/b1 bI]

b2 S

fal 0] X

Figure C.1: The area S given by two vectors.

The area S is seen to be
S = a1by = |a||b|sind (C.2)

To have an expression for any surface S as a function of the angle # between
the vectors, we construct a matrix for rotating the vectors around origin.

To rotate vector a, each subvector (a;,0) and (0,az) projected on the x-
and y-axis respectively is rotated. (a1,0) rotated by € gives (a1 cosf,a; sinf).
(0, a2) rotated by 6 gives (—agzsin 6, as cosf). The complete rotated vector a’ is

97

APPENDIX C. SINE AND COSINE PROOF 98

al’

al

Figure C.2: The vector a rotated by 6 radians.

thus given by
(a1 cos @ — ag sin b, ay sin Baz cos b)) (C.3)

Writing (C.3) in matrix form gives:
cos —sinf ai
(sinf cos@) (as) (C4)

The two by two matrix is called the rotation matriz. Multiplying by this
matrix now rotates the original vectors a and b by an angle 6.

cosf —sind ar \ [aicosf \ [d}
< sinf cosf > < 0 > (aysin @) o < al (C.5)

and for b :
cosf —sinf b1 \ [bicosf —basin® \ [b (C.6)
sind cos# by)\ bysinf+bacosf)\ b ’

We now define: S" = a)b, — ab|. Expanding for ¢’ and b’ gives

S" = ay cos O(by sin 6 + by cos) — ay sin (by cos @ — by sin)
= @1 cosy sin @ + aj coss cos @ — aj sing cos @ + aq sing sin 6
= a1bs cos® 0 + a1by sin® 0

= a1by

APPENDIX C. SINE AND COSINE PROOF 99

cos —sinf \|
< sinf cosf > a
cos? § 4 sin?6 = 1, and the vectors do therefore not, change their modulus after
a rotation).

We now accept that aibs — asb; = S = |a||b|sinf. This is formalized in
three dimensions as the cross product, or external product of a and b:

So we get S’ = 5. (We might also say that S’ = S since

ik
|a/\b| =|la asx O :O-i+0-j+(a1b2—a2b1)-k, (C?)
by by 0

where i, j and k are unit vectors along the =, y and z axis respectively. Then
S =laADb]
The cosine expression can be deduced in a similar way:

a1by + azbs

jallb] (©8)

cosp =

We study again Figure C.1. We see that a; = |a],az = 0,b; = |b|cosf and
by = |b|sinf. The dot product, or internal product of vectors a and b is
defined by:

ab = a1by + azby = |a||b| cos (C.9)
and in our case, with as = 0:
ab = a1b; = |a||b| (C.10)

We now define two vectors rotated by 6: a’b’ = a|b] + ahb,. Expanding
with a’ and b’ from equations C.5 and C.6 gives:

ay cos 0(by cos @ — by sin) + ay sin O(by sin 6 + by cos b))
= a1 cosy cos B — aj coss sin 6 + aq sing sin @ + a4 sing cos
= ayby cos® 0 + ayby sin® 0
=aiby

So ab = a’b’. This result is equal to |a||b|cos 8, so we now accept that a;b; +
azby = ab = |a||b| cos¥.

Appendix D

Appendixes on CD-ROM

D.1 Important structures in CONTROL

Included on the project CD: \nodestruct\nodestruct.txt

D.2 File output from MAD example

Included on the project CD: \madexample\psextwissl.out

D.3 Aperture module source code

Included on the project CD: \aperfuncts*.*
All coding done from scratch, except the function check_if_inside, which
was based on a FORTRAN module by J. Bernard Jeanneret, and the function

fill_aperture_header, which is based on the MAD-X routine that fills the
Twiss table header.

D.4 Total MAD-X source code

Total MAD-X source code, including the aperture module. Please read
copyright.html before use.

Included on the project CD: \MADsource\madX*.*
To run, copy madX directory to harddrive.

Compile command: “make”
Run command: “madx < v65.madx”

Creates files twiss.bl.data, aperl.out and arc.ps.

100

APPENDIX D. APPENDIXES ON CD-ROM 101

D.5 Tables from Chapter 9

Included on the project CD: \results*.*

D.6 MAD-X User’s Guide

Included on the project CD: \madx manual\madx manual.pdf

D.7 Preproject

Included on the project CD: \preproject\preproject.doc

D.8 Electronic version

This report in electronic format.

Included on the project CD: \project\CAA.ps or \project\CAA.pdf

